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ABSTRACT

Gene regulation is a dynamic process that underlies all aspects of human devel-
opment, disease response, and other key biological processes. The reconstruc-
tion of temporal gene regulatory networks has conventionally relied on regression
analysis, graphical models, or other types of relevance networks. With the large
increase in time series single-cell data, new approaches are needed to address the
unique scale and nature of this data for reconstructing such networks. Here, we
develop a deep neural network, Marlene, to infer dynamic graphs from time series
single-cell gene expression data. Marlene constructs directed gene networks us-
ing a self-attention mechanism where the weights evolve over time using recurrent
units. By employing meta learning, the model is able to recover accurate temporal
networks even for rare cell types. In addition, Marlene can identify gene inter-
actions relevant to specific biological responses, including COVID-19 immune
response, fibrosis, and aging.

1 INTRODUCTION

Biological systems are dynamic, changing over time in response to various stimuli and events. To
construct accurate models of biological activity during development, disease progression, treatment
response, and other biological processes, it is essential to track their evolution over time (Bar-Joseph
et al., 2012). Studying the regulation of these dynamic processes is key for understanding the under-
lying mechanisms that drive the response and for identifying potential interventions that can serve
as cures for diseases (Silverman et al., 2020).

Much of the research in this area is focused on the reconstruction of regulatory networks (Karlebach
& Shamir, 2008; Badia-I-Mompel et al., 2023). These networks comprise a subset of proteins known
as transcription factors (TFs), which regulate the activity of all other genes and proteins within the
cell. However, these gene regulatory networks (GRNs) are not static. Instead, both the active nodes
(proteins) and the edges (genes) change over time (Gasch et al., 2000; Luscombe et al., 2004). To
reconstruct such networks, researchers often integrate static data—such as the type of nodes in the
network—with dynamic data, such as time series measurements of node activity (gene expression
profiles). Early work in this area employed microarrays and ChIP-chip data (Lee et al., 2002; Wang
et al., 2006; Blais & Dynlacht, 2005; Gilchrist et al., 2009) followed by time series next-generation
RNA-seq data (Wang et al., 2009), and most recently, single-cell RNA-seq (scRNA-seq) data (Ding
et al., 2022; Nguyen et al., 2021; Matsumoto et al., 2017b).

Several computational methods have been proposed over the last two decades to reconstruct such
dynamic GRNs (Bar-Joseph et al., 2003; Yosef et al., 2013; Schulz et al., 2012; Yan et al., 2021).
Some of these methods utilized time-varying graphical models including Hidden Markov models,
Markov random fields, and Dynamic Bayesian Networks (Ahmed & Xing, 2009; Song et al., 2009;
Dondelinger et al., 2013; Zhu & Wang, 2015). Other approaches attempted to use regression or to
learn temporal precision matrices using extensions of the graphical lasso algorithm (Wang et al.,
2020; Hallac et al., 2017).

While such models successfully reconstructed some processes (Ahmed & Xing, 2009; Kim et al.,
2012), they are less suitable for the more recent types of data, most notably scRNA-seq time series
data. First, the much larger size of the data presents a challenge for traditional graphical models. In
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addition, prior methods do not directly account for the fact that multiple cells are profiled for each
time point. Finally, prior methods do not utilize the ability to learn much larger models such as
neural networks which have been shown to improve many other learning tasks (Ching et al., 2018;
Angermueller et al., 2016).

Very recently, a few methods have been proposed for using deep learning to recover static GRNs
(Shrivastava et al., 2022; Shu et al., 2021). However, they cannot be directly used to capture dynamic
GRNs (i.e., enforcing learning between time points). Two recent approaches, Dictys and CellOracle
(Wang et al., 2023b; Kamimoto et al., 2023) can be used to infer dynamic GRNs, however, these
methods rely on a different type of data (ATAC-seq) which is harder to obtain and less prevalent.

Beyond the realm of biology, the inference of dynamic graphs using neural networks has garnered
significant attention. This problem has found applications in diverse domains, including information
retrieval, molecular graphs, and traffic forecasting (Zhu et al., 2021; Zhang et al., 2020). While there
are similarities between these problems and the dynamic GRN problem, there are also significant
differences that make it hard to extend these methods for time series scRNA-seq. The problem
of inferring temporal graphs is usually defined by recovering a series of graph adjacency matrices
At ∈ Rn×n where n is the number of nodes and each node is a k-dimensional feature vector.
However, when dealing with scRNA-seq data, the problem becomes: given a gene expression matrix
Xt ∈ Rc×g , where c is the number of cells (samples) and g is the number of genes (features), we are
interested in recovering gene networks At ∈ Rg×g , i.e., graphs of features rather than nodes (cells).

In this paper, we present a novel deep learning framework that effectively addresses the challenges
discussed above for reconstructing dynamic GRNs. Our contribution is three-fold. First, we demon-
strate that existing deep learning methods for temporal graph structure learning can be adapted
for scRNA-seq data analysis. To achieve this, we perform a gene featurization step by leveraging
set-like architectures such as DeepSets or Set Transformers (Zaheer et al., 2017; Lee et al., 2019).
Second, we construct dynamic graphs by applying a self-attention mechanism (Bahdanau et al.,
2014) to these gene feature vectors. To model dynamics, we draw inspiration from EvolveGCN
where a gated recurrent unit (GRU) evolves the weights of a graph neural network (Pareja et al.,
2020). However, unlike EvolveGCN, our approach uses a GRU to evolve the weights of key and
value projection matrices in the self-attention module. This allows for the construction of dynamic
graphs that capture regulatory interactions over time. Lastly, GRNs are highly dependent on cell
functions, hence, separate GRNs need to be learned for each cell type. A single scRNA-seq dataset
may combine cells of multiple types, some of which are rare cell populations. To this end, we
employ a model-agnostic meta-learning (MAML) (Finn et al., 2017) training procedure by treating
each cell type as a “task” to be learned. With this approach, the model quickly adapts to tasks with
few samples, enabling the reconstruction of dynamic graphs even for rare cell types.

We apply our meta learning approach for inferring temporal gene regulatory networks (Marlene)
to three publicly available scRNA-seq datasets. The first is a time series SARS-CoV-2 mRNA
vaccination dataset of human peripheral blood mononuclear cells (PBMCs) (Zhang et al., 2023).
The second dataset is a human lung aging atlas from the Human Cell Atlas Project (Regev et al.,
2017; Sikkema et al., 2023). The third dataset is from a study of lung fibrosis using a mouse lung
injury model (Strunz et al., 2020). All three datasets incorporate several time points, thus enabling
a longitudinal analysis of the relevant biological responses through the inference of dynamic, cell
type-specific GRNs. As we show, our method is able to reconstruct accurate networks for these
datasets, significantly improving upon prior methods proposed for this task.

2 METHODS

2.1 PROBLEM SETUP

Consider a gene expression matrix X ∈ Rc×g where c is the number of cells and g is the number
of genes. In the human genome, g varies from 25,000 to 30,000, while the number of cells could
be between a couple thousand to a few million. In the setting of dynamic graphs, we assume the
existence of a time point for each row (cell), leading to a time series X̃ := {X1, . . . ,XT } with
Xt ∈ Rct×g . Here, the number of cells ct may vary with t. We are interested in recovering a
series of directed graphs G̃ := {G1, . . . ,GT } where each Gt = {N , Et}. The set of nodes is the
set of genes, i.e., N = [g], and we assume this set is static over time. The dynamic edge sets

2



Self-Attention

GRU

GRU

Self-Attention

Self-Attention

PM
A

.

.

.

Re
co
ns
tr
uc

t

Li
ne

ar

Figure 1: Overview of Marlene. Marlene takes as input gene expression data in the form of a cell-
by-gene matrix. It then performs gene featurization via the pooling by multihead attention (PMA)
mechanism which returns a gene feature matrix. This matrix is then inputted into a self-attention
module to obtain a gene network in the form of an adjacency matrix. The weights of the self-
attention module evolve from one time point to the next via a gated recurrent unit (GRU). The
expression of transcription factors and the recovered graph are used to reconstruct the full gene
expression vector. Finally, the reconstructed matrix is used to predict the cell type for the batch. The
network is trained in a model-agnostic meta-learning fashion where each cell type is treated as a
“task” to be learned, thus enabling the model to quickly adapt to cell types with low representation.

Et = {(u, v, w)}u,v∈N ,w∈R denote directed weighted links between genes, where the source u is
the gene that regulates the expression of its target v, and w is the strength of this relationship. The
source nodes are called transcription factor genes (TFs).

We can alternatively characterize each graph Gt by the corresponding adjacency matrix At ∈ Rg×g .
Denote Ã := {A1, . . . ,AT }. Since TFs control the expression of their target genes, the underlying
GRNs should, in principle, allow the recovery of the full expression profile for a cell. In other
words, X̃ = f(X̃TF, Ã) where X̃TF denotes the expression of all TFs. The function f is unknown as
it involves intricate interactions among genes, including combinatorial effects. For instance, certain
scenarios exist where TFs cooperate with each-other to activate a gene, while in other instances, the
activation requires some TFs to be active and others to be inactive (Wise & Bar-Joseph, 2015).

In existing deep learning literature, f is sometimes modeled using autoencoders (Seninge et al.,
2021; Shu et al., 2021; Wang et al., 2023a). However, reconstructing the full gene expression vector
is challenging as the data is extremely sparse and conventional reconstruction losses, such as mean
squared error, tend to emphasize overall averages. Since GRNs are dependent on cell function, we
hypothesize that simplifying the problem by predicting cell types may improve the accurate recovery
of GRNs. In other words, given a temporal batch of cells of the same type x̃TF ∈ RT×batch size×n. TFs,
we consider the classification problem y = f(x̃TF, Ã) where y is the known cell type label for the
batch. Finally, the task of learning Ã given a batch x̃ becomes

argmin
Ã

CrossEntropyLoss(y, f(x̃TF, h(x̃))), Ã := h(x̃) (1)

for choices of functions f and h.

2.2 ARCHITECTURE OF MARLENE

In this work, we propose a neural network architecture called Marlene that effectively learns dy-
namic GRNs (Figure 1). Marlene consists of three main steps. The first two steps address the choice
of h in (1), while the last addresses the choice of f .
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In the first step, we apply a gene featurization step by treating a batch of cells as a set of elements.
The DeepSet architecture introduces a pooling operator that allows the neural network to be invariant
to the order of input samples, effectively treating the input as a set (Zaheer et al., 2017). Similarly,
the Set Transformer architecture is designed to process sets of data via attention-based operators
that are permutation invariant (Lee et al., 2019). Specifically, the pooling by multihead attention
(PMA) aggregation scheme introduced in Set Transformers outputs a matrix of k vectors H ∈ Rk×g

for an arbitrary input set X ∈ Rc×g . Each of the k output vectors has a specific meaning such as
statistics of the input data. By applying the PMA operator to a temporal batch of cells, we obtain
a gene-by-feature matrix G = H⊤ ∈ Rg×k that encodes information about the cells from each
time point. PMA consists of a multihead attention block (MAB) where the input X consists of key
vectors, and the query is a learnable set of k vectors S. In this work, we use a shared PMA layer for
all time points assuming that the specific key statistical properties are invariant (though their value
obviously changes for different time points). Given x̃ = [x1, . . . , xT ], we have

G̃ = PMA(x̃)⊤ := MAB(S, x̃)⊤ := (M+ rFF(M))⊤ (2)
where M = S + Multihead(S, x̃, x̃) and rFF is a row-wise feedforward layer. For completeness,
these operations are defined in the appendix.

Note that if cells of different types are mixed in the same batch, the statistics derived by the PMA
step may not capture cell type-specific information. Consequently, in a single batch, we only include
cells of one type.

In the second step, Marlene learns temporal adjacency matrices using a self-attention mechanism.
To model dynamics, we draw inspiration from EvolveGCN which performs model adaptation using
a GRU (Pareja et al., 2020). Unlike EvolveGCN, which uses the GRU to update the weights of
a graph convolution layer, we use a GRU to evolve the key and query projection weights of the
self-attention module. Since most time series we deal with contain very few time points, a GRU
should suffice and not suffer from vanishing gradient problems. Similar to EvolveGCN, we apply
a summarization step via top k pooling to reduce the gene feature matrix to a square matrix for the
GRU (appendix).

More precisely, we initialize self-attention weights WQ
0 ,W

K
0 ∈ Rk×k and two recurrent units

GRUQ,GRUK . Given the time sequence of gene feature matrices G̃ obtained from the previous
step, temporal adjacency matrices are constructed in the following recurrent fashion for all t ∈ [T ]:

Zt =TopK(Gt) (3)

WQ
t = GRUQ(Zt,W

Q
t−1), WK

t = GRUK(Zt,W
K
t−1) (4)

Qt = GtW
Q
t , Kt = GtW

K
t (5)

At = softmax
(
QtK

⊤
t√

k

)
. (6)

Here, WQ
t and WK

t serve as hidden states for the respective GRUs. The GRUs dynamically adapt
self-attention weights, influencing which TFs specific genes should attend to in subsequent time
steps. Consequently, the evolution of these weights is constrained. We also restrict the columns of
At (i.e., sources) to p known TFs in the TRRUST database (Han et al., 2018) which greatly reduces
the number of parameters to be learned. Therefore, in our implementation At ∈ Rg×p.

Next, we perform a gene expression reconstruction step based on the expression of TFs and the
inferred adjacency matrices. This is followed by any number of fully connected layers with nonlinear
activation functions σ. Finally, we sum across output vectors to obtain a logit vector with the same
dimension as the number of cell types in the data:

ỹ = Pool(Linear(. . . σ(Linear(x̃TFÃ⊤)))). (7)
Network depth can be introduced at all three levels by stacking MAB layers during gene featuriza-
tion, stacking GRUs, or stacking linear layers at the end.

2.3 META LEARNING FOR RARE CELL TYPES

ScRNA-seq datasets often originate from biological samples that exhibit cellular heterogeneity, po-
tentially containing multiple distinct cell types. Some of these cell subpopulations are rare and are
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Table 1: Time series scRNA-seq datasets used in this study.
Number of Metadata

Dataset Cells Genes1 TFs Cell Types Time Points Sample

SARS-CoV-2 113,271 1899 556 7 d0, d2, d10, d28 PBMCs (human)
HLCA 27,9532 2433 674 11 Ages < 35, 35− 50,≥ 50 lung (human)
Fibrosis 22,758 1217 433 6 PBS, d3, d7, d10, d14, d21, d28 lung (mouse)

1 Only showing the number of genes overlapping with the TRRUST database.
2 We randomly sampled cells from 11 cell types.

represented by a small number of cells in the sample (Jindal et al., 2018). Since we are concerned
with the discovery of cell type-specific temporal GRNs, learning such large graphs for these rare
cell types may not be feasible and lead to overfitting. Since many interactions are shared across cell
types (Chasman & Roy, 2017), we employ the model-agnostic meta-learning framework (MAML)
(Finn et al., 2017). MAML is specifically designed to enable neural networks to adapt to novel tasks
with limited training samples (i.e., few shot learning). By treating each cell type as a “task”, the
MAML training paradigm facilitates the recovery of dynamic graphs for rare cell types. We begin
by adapting model parameters through multiple optimization steps using a batch of support exam-
ples (cells). These adapted parameters are then evaluated on a separate set of query cells, followed
by a meta-update.

During the adaptation step, we perform gradient descent, while for the meta-update, we employ the
Adam optimizer (Kingma & Ba, 2014). During training, gradient clipping proves crucial to prevent
overfitting of the MAML adaptation step to the cell type under consideration.

3 EXPERIMENTS

To validate our approach, we use three public scRNA-seq datasets (Table 1): a human SARS-CoV-2
mRNA vaccination dataset, a lung aging atlas (The Human Lung Cell Atlas—HLCA), and a mouse
lung fibrosis dataset (Zhang et al., 2023; Sikkema et al., 2023; Strunz et al., 2020). To assess the
quality of the inferred networks, we draw upon two databases of TF-gene regulatory interactions,
which have been curated from the scientific literature—TRRUST and RegNetwork (Han et al., 2018;
Liu et al., 2015). For the human genome, TRRUST contains 8427 unique validated regulatory edges,
while RegNetwork contains 150,405. Note that certain edges lack a corresponding TF or gene in the
expression data, so the numbers used for the analysis are smaller. We used only the genes that were
present in TRRUST for all three datasets. For the mouse lung dataset we used the corresponding
mouse networks for both databases. To match the number of links in these databases, we selected the
top 2% of edges for all methods. For Marlene, this was done by sparsifying the self-attention matrix
to retain only the top scoring edges. The significance of the overlap was carried out via Fisher’s exact
test (Fisher, 1922). All p-values were corrected for multiple testing using the Benjamini-Hochberg
procedure (Benjamini & Hochberg, 1995).

We compare Marlene against several popular static gene regulatory network inference methods in-
cluded in the BEELINE benchmark (Pratapa et al., 2020) and beyond, such as PIDC, GENIE3,
GRNBoost2, SCODE, and DeepSEM (Chan et al., 2017; Huynh-Thu et al., 2010; Moerman et al.,
2019; Matsumoto et al., 2017a; Shu et al., 2021), which are applied independently to each time
point. DeepSEM is a deep generative model based on structural equation modeling. We also com-
pare against time-varying graphical lasso (TVGL)1, a method that models temporal precision ma-
trices (Hallac et al., 2017), and to a deep neural network that utilizes the S4 module (GraphS4mer)
(Tang et al., 2022; Gu et al., 2021).

We train Marlene using a batch size of 16 cells and also set the number of seeds in the PMA layer to
16. For MAML, we use 5 inner steps. The model with the lowest loss is selected for GRN inference.
For the meta-update, we use a decaying learning rate starting with 1e−4, while for the inner step
we use 1e−3 for both datasets. Experiments were performed using an NVIDIA RTX 3060 and took
only a few minutes per run.

1We used the implementation of https://github.com/fdtomasi/regain
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Figure 2: Overlap analysis of the SARS-CoV-2 vaccination dataset. Showing − log10(FDR) values
from a Fisher’s exact test measuring the overlap between predicted TF-gene interactions in recon-
structed networks and two TF-gene interaction databases (TRRUST, RegNetwork). Best performing
method is starred.

3.1 CASE STUDY 1: SARS-COV-2 VACCINATION

The SARS-CoV-2 vaccination dataset consists of peripheral blood mononuclear cells (PBMCs) from
six healthy donors at four time points (days 0, 2, 10, and 28) (Zhang et al., 2023). Day 0 samples
were obtained before vaccination. We removed the “Other” cell type group and kept the remaining
seven. These include B cells, dendritic cells (DC), monocytes (Mono), natural killer cells (NK), and
various types of T cells.

3.1.1 MARLENE RECOVERS ACCURATE GENE REGULATORY NETWORKS

Analysis results using Marlene and prior methods is presented in Figure 2. As can be seen, Marlene
outperformed competing methods in the dynamic GRN inference task for 5 of the cell types, yielding
statistically significant results across time points. Specifically, for B cells, Marlene successfully
identified more than 800 regulatory links within the RegNetwork framework at each time point
(FDR ≤ 1e−67), surpassing the performance of the second-best method, SCODE, which detected
579 links (day 2, FDR ≤ 1e−15). Analogous findings were observed for natural killer cells, where
Marlene identified over 600 RegNetwork links at each time point (FDR ≤ 1e−18). In comparison,
the second-ranking method, SCODE, showed a significant overlap for only one time point (day 28).
Upon examining the TRRUST database, we observed less pronounced differences in the results.
Nonetheless, Marlene obtained higher overlap for 5 out of 7 cell types followed by GENIE3, which
performed well for monocytes and the “Other T” category.

3.1.2 MARLENE RECOVERS REALISTIC DYNAMIC TRANSITIONS

The analysis so far has primarily focused on individual time points. Next, we turned our attention
to assessing the quality of graph transitions between consecutive time points. Specifically, we ex-
amined whether the learned graphs demonstrated smooth transitions over time. To evaluate this,
we computed the intersection-over-union (IoU) score for edges between time points t and t + 1
(Figure 3a). Notably, our findings revealed that for most cell types, Marlene exhibited the lowest
IoU score during the initial period (days 0 → 2), followed by higher scores during days 2 → 10,
and 10 → 28. This pattern aligns with our expectations, as variations in gene expression are likely
to be most pronounced during the early post-vaccination period (days 0 → 2). From the methods
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Figure 3: Temporal analysis of the predicted gene regulatory networks for the SARS-CoV-2 vaccine
dataset. (a) Intersection-over-union (IoU) scores between consecutive graphs. (b) For each method,
top 3 MSigDB terms enriched for genes that were regulated at day 2 but not day 0.

we compare against, GENIE3, GRNBoost2, SCODE, PIDC, and DeepSEM exhibited significantly
lower IoU scores across all temporal transitions, likely due to their lack of dynamic modeling and
the fact that they were ran independently per time point. TVGL, on the other hand, showed high
IoU scores which remained close to constant over time. Finally, Graphs4mer displayed a reduction
in IoU scores over time, which is unlikely given the expected immediate immune response.

Next, we sought to assess the quality of the TF-gene regulatory links added between time points.
For brevity, we focused specifically on the initial temporal transition (days 0 → 2), as this period
is likely to witness a more significant biological response. For each cell type, we took note of all
the genes that were regulated by some TF at day 2 but not at day 0. Using this set of genes z, we
performed gene set enrichment analysis (GSEA) (Subramanian et al., 2005; Fang et al., 2023) using
the molecular signatures database (MSigDB) (Liberzon et al., 2015). Through permutation tests,
GSEA assigns an enrichment score (ES) to z reflecting its overrepresentation within the MSigDB
gene set collection. We found that for many cell types, genes added by Marlene at day 2 greatly
overlapped with COVID-19 and SARS-CoV-2 related gene sets. For instance “Interferon Gamma
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Figure 4: Results on the HLCA dataset. (a) FDR corrected p-values of Fisher exact tests reflecting
the number of links that overlap with TRRUST and RegNetwork databases. (b) Top 3 Jensen Dis-
eases terms enriched for genes added between the first and second age group.

Response”, which was identified as a SARS-CoV-2 antiviral response (Hilligan et al., 2023), was
significantly enriched in dendritic cells (15 genes, FDR = 1e−6). Similarly, “TNF-alpha Signaling
via NF-kB”—a pathway involved in the immune response and inflammation (Hayden & Ghosh,
2011)—was enriched in several cell types, as well as processes such as “Apoptosis” (cell death) and
“p53 Pathway” (inhibits replication of infected cells) (Elmore, 2007; Harris & Levine, 2005). Other
methods, while being enriched for relevant terms, showed a smaller gene overlap for these types
(Figure 3b) or were not consistent across cell types (e.g., DeepSEM, SCODE).

Overall, these results suggest that Marlene is able to capture both known TF-gene links, but also
genes that are relevant to the response being studied.

3.2 CASE STUDY 2: AGING AND SENESCENCE IN THE LUNG

The Human Lung Cell Atlas (HLCA) is a large data integration effort by the Human Cell Atlas
Project (Sikkema et al., 2023; Regev et al., 2017). This data combines scRNA-seq samples from 107
individuals spanning an age range of 10 to 76 years, making it particularly attractive for studying
aging and senescence (a form of aging characterized by the absence of cell division) (van Deursen,
2014; SenNet Consortium, 2022).
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Figure 5: Enrichment for senescence using the SenMayo set. For 4 cell types, there was statistically
significant enrichment for the oldest age group. We only used the top 200 regulated genes.

We split the atlas into three age groups at 35 and 50 years old, thus forming a pseudotime series
of length 3. We removed smokers from the dataset as these will likely confound the results. To
accommodate the data in the GPU, we randomly selected cells from 11 cell types, including type II
pneumocytes, endothelial cells, and monocytes.

Similar to the vaccination dataset, we begin the analysis by evaluating the set of regulatory links
using the TRRUST and RegNetwork databases. For this dataset we find that Marlene and SCODE
are the top two performing methods (Figure 4a). For some of the cell types, Marlene achieves signif-
icant results, recovering more than 1000 RegNetwork links (classical monocytes, FDR = 1e−76).
Even for cell types with fewer cells, such as non-classical monocytes (with only 138 cells for the
second age group), Marlene still recovered more than 800 known TF-gene links for each transition
(FDR ≤ 1e−27). SCODE performed well for some cell types such as CD1c-positive myeloid den-
dritic cells and CD4-positive, alpha-beta T cells. For all other methods, the overlap was smaller
(Appendix Figure 6a). Note that while SCODE is comparable for the static network (single time
point) inference task, it does not utilize dynamic information.

We next examined the ability of different methods to capture the dynamics of the biological pro-
cesses. For this, we looked at graph transitions. IoU scores show that only the temporal methods
(Marlene, TVGL, Graphs4mer) capture the smooth temporal transition between time points, while
other methods, including SCODE, achieve low IoU scores (Appendix Figure 6b). We performed
GSEA using Jensen Diseases gene set to see if genes added by Marlene in these transitions were
enriched for any age-related diseases (Pletscher-Frankild et al., 2015; Grissa et al., 2022). We found
that Marlene added genes are enriched for several diseases such as arthritis, lung disease, and coro-
nary artery disease. Other dynamic baselines were also enriched for relevant terms, but contained
fewer marker genes (Figure 4b).

Finally, we also investigated whether the genes regulated at different age groups were enriched for
senescence. Cellular senescence refers to a permanent arrest of cell division triggered by the accu-
mulation of DNA damage (Suryadevara et al., 2024). The absence of cell division can detrimentally
impact tissue regeneration and repair, thereby contributing to various age-related diseases. Here, we
use the SenMayo gene set which contains 125 genes reported to be enriched for senescence (Saul
et al., 2022). Only 81 of these genes overlapped with our data. We found that for 4 cell types, there
was an increase in SenMayo gene regulation at the oldest age group (age > 50), suggesting that
senescent cells accumulate with age as hypothesized (Figure 5).

3.3 CASE STUDY 3: FIBROSIS IN A MOUSE LUNG INJURY MODEL

Next, we evaluated whether Marlene could perform effectively across different species by analyzing
a dataset from a mouse model of lung injury induced by the chemotherapeutic agent bleomycin
(Strunz et al., 2020). The dataset included seven time points: one pre-treatment and six post-
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treatment intervals. After filtering out cell types with low representation and genes with low counts,
we retained six cell types, including B cells, T cells, and macrophages.

In this analysis, Marlene outperformed competing methods in four of the six cell types when bench-
marked against the RegNetwork database, specifically in alveolar epithelial cells, dendritic cells,
endothelial cells, and macrophages. For T cells, TVGL showed slightly better performance. When
evaluated against the TRRUST database, SCODE performed well in four cell types, while Marlene
surpassed it in the remaining two. The differing results between two databases may reflect their
incomplete coverage, highlighting the need for further refinement.

Finally, all static baselines, including SCODE, showed low IoU scores across time points, indi-
cating their inability to capture temporal evolution. In contrast, Marlene, showed increasing IoU
scores over time, suggesting ongoing lung regeneration following treatment which slowly stabilizes.
Figures illustrating these findings are provided in the appendix.

4 DISCUSSION

Gene regulation is a dynamic process that underlies all biological systems and responses. Under-
standing which TFs regulate which genes, and when this regulation occurs, provides insights into
these dynamic processes which can ultimately lead to better treatment options.

To improve on current methods for reconstructing time varying regulatory networks, we use the ex-
pressive capabilities of deep neural networks to model the dynamic regulation of genes. Specifically,
we focused on inferring dynamic networks from scRNA-seq data.

Our proposed method, Marlene, constructs dynamic graphs from time series data. Marlene begins
with a set pooling operator based on PMA to extract gene features. These gene features are sub-
sequently used to construct dynamic graphs via a self-attention mechanism. The weights of the
self-attention block are updated through the use of GRUs. Additionally, by employing MAML, we
help Marlene uncover graphs even for rare cell types However, Marlene optimizes the prediction of
cell type label rather than gene expression. As such, Marlene is not currently equipped to determine
the impact of perturbations including gene knockouts or overexpression experiments. Exploring the
integration of causal inference capabilities into Marlene represents a promising direction for future
research.

We demonstrated the effectiveness of Marlene in recovering dynamic GRNs using three datasets: a
SARS-CoV-2 vaccination dataset, a lung aging atlas, and a mouse dataset of fibrosis. In all three
datasets, Marlene successfully identified many validated TF-gene links from the TRRUST and Reg-
Network databases across various cell types. It also accurately modeled the temporal dynamics of
these connections. Some prior methods ignored the temporal aspect, leading to very little similarity
between consecutive time networks. Other methods integrated all time points together, leading to
very similar networks for each time point. In contrast, Marlene accurately recovered the variation
dynamics, which is often characterized by strong rewiring following treatment that later stabilizes.
In addition, Marlene identified many relevant edges. For instance, in the lung aging data, several
dynamic edges were enriched for age-related diseases, such as arthritis. Meanwhile, in the SARS-
CoV-2 data, these dynamic links were enriched for immune response processes. Prior methods
captured some known edges, however, the overall results were less significant. By providing better
models to explain disease and vaccine response, researchers can zoom in on the specific mechanisms
targeted which in turn can lead to better treatments.

5 LIMITATIONS

While successful, Marlene has a few limitations. The datasets we used in this study, while typical for
scRNA-seq time series, consisted of only a few time points. For longer sequences, the GRU opera-
tion may suffer from vanishing gradient problems (Pascanu et al., 2012). In such scenarios, the S4
module may be preferred as it has been shown to model long sequences better than traditional GRUs
(Gu et al., 2021). In addition, using a large number of genes for training, results in quadratic growth
in memory consumption due to the need to store adjacency matrices. This led us to restrict the set of
genes for each of the two studies. A more efficient implementation or alternative approaches such
as FlashAttention (Dao et al., 2022) can lead to better ability to utilize all genes profiled.
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A APPENDIX

A.1 SET TRANSFORMER OPERATIONS

We redefine the Multihead and rFF operations from Set Transformers (Lee et al., 2019) to the ones
used for Marlene here.

First, we define the Attention operation. Let Q ∈ Rk×g be the query matrix of k elements and g
dimensions. The Attention operation used for MAB is

Attention(Q,K, V ) = softmax
(
QK⊤
√
g

)
V (8)

where the key and value matrices are K,V ∈ Rc×g . Next, the Multihead attention operation with h
heads (Vaswani et al., 2017) is given by

Multihead(Q,K, V ) = concat(O1, . . . , Oh)W
O (9)

where Oj = Attention(QWQ
j ,KWK

j , V WV
j ) for weight matrices WQ

j ,WK
j ,WV

j ∈ Rg×g/h and
WO ∈ Rg×g (these matrices are not to be confused with self-attention weights used consequently
for Marlene). In our implementation, k is the number of seeds or output vectors used for the PMA
layer. This is a hyperparameter that corresponds to the number of “statistic” vectors we expect to
learn from data. Finally, rFF is a feedfoward layer such as a linear layer.

A.2 EVOLVEGCN OPERATIONS

Here, we introduce the GRU and topK pooling operations used in the second step of Marlene.

The topK pooling operation is needed to summarize nodes into k representative ones (Cangea et al.,
2018; Pareja et al., 2020). Here k is the same as the number of seeds used for PMA. Given an input
G ∈ Rg×k and a learnable vector q, the TopK operation performs the following steps:

ρ =
Gq

∥q∥
i = Top-k-indices(ρ)
Z = [G⊙ tanh (ρ)]i.

At time step t, given a pooled matrix Zt and hidden state Wt−1 (i.e., self-attention weights WQ
t−1

or WK
t−1), the standard GRU operation is:

rt = σ(MirZt + bir +MhrWt−1 + bhr)

zt = σ(MizZt + biz +MhzWt−1 + bhz)

nt = tanh(MinZt + bin + rt ⊙ (MhnWt−1 + bhn))

Wt = (1− zt)⊙ nt + zt ⊙Wt−1

where σ is the sigmoid function and ⊙ is the Hadamard product. See also Paszke et al. (2019).
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A.3 SUPPLEMENTARY FIGURE FOR THE HLCA DATASET
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Figure 6: (a) FDR corrected p-values of Fisher exact tests reflecting the number of links that overlap
with the two TF-gene databases. (b) IoU scores across time reflecting the overlap between consecu-
tive graphs.

18



A.4 ANALYSIS OF THE FIBROSIS DATASET
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Figure 7: (a) FDR corrected p-values of Fisher exact tests reflecting the number of links that overlap
with the two mouse databases. (b) IoU scores across time reflecting the overlap between consecutive
graphs.
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