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Abstract14

Spatial transcriptomics (ST) provides a unique opportunity to study cellular organization15

and cell-cell interactions at the molecular level. However, due to the low resolution of the16

sequencing data additional information is required to utilize this technology, especially for cases17

where only a few cells are present for important cell types. To enable the use of ST to study18

senescence we developed scDOT, which combines ST and single cell RNA-Sequencing (scRNA-19

Seq) to improve the ability to reconstruct single cell resolved spatial maps. scDOT integrates20

optimal transport and expression deconvolution to learn non-linear couplings between cells and21

spots and to infer cell placements. Application of scDOT to existing and new lung ST data22

improves on prior methods and allows the identification of the spatial organization of senescent23
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cells, the identification of their neighboring cells and the identification of novel genes involved in24

cell-cell interactions that may be driving senescence.25

1 Introduction26

Recent advancements in genomics technologies have facilitated the profiling of gene expression at27

the single-cell level, unveiling valuable insights regarding the molecular heterogeneity of complex28

biological systems. While single-cell RNA sequencing (scRNA-seq) has significantly enhanced29

our comprehension of cell-type diversity, it lacks spatial information due to the dissociation of30

cells. Spatial transcriptomics (ST) techniques enable the preservation of spatial information31

within tissue samples but typically offer lower resolution or coverage compared to scRNA-seq32

data. Hence, the integration of scRNA-seq and ST data becomes imperative for acquiring a33

spatially informed single-cell resolution dataset [28]. This integration approach not only ensures34

a more comprehensive understanding of the molecular heterogeneity within complex biological35

systems but also retains the spatial context of gene expression.36

Existing methods for integrating single-cell and spatial transcriptomics data primarily focus37

on cell-type deconvolution. These methods decompose gene expression in a spatial spot into38

linear combinations of fractions attributed to different cell types, utilizing the single-cell data39

solely as a reference [24, 12, 30, 21, 5, 29, 2, 10]. While successful, these methods often struggle40

when it comes to cell types with only a few cells [6, 32, 51]. Moreover, in cases where these41

smaller cell types are very similar to cell types with larger number of cells, the assignment of42

deconvolution methods often completely ignore these smaller cell types as shown in Results.43

Cellular senescence, a state of permanent growth arrest, is implicated in various age-related44

diseases. Understanding cellular senescence requires analyzing cell-cell communications at the45

individual cell level, as the process exhibits heterogeneity, where only a few cells within a given46

cell type enter a senescent state simultaneously. Additionally, paracrine senescence, in which a47

senescent cell can induce senescence in neighboring cells, is of significant importance. Effective48

communication between senescent cells and neighboring cells is crucial for the progression and49

maintenance of the senescent phenotype [38, 13]. Senescent cells actively engage in intercellular50

communication, primarily through the secretion of senescence-associated secretory phenotype51

(SASP) factors, influencing neighboring and distant cells [13, 15]. However, the mechanisms52

underlying these communications remain poorly understood. To address this gap, and to en-53

able the study of cell-cell interactions for these small number of senescent cells within a cell54

type using spatial transcriptomics, we propose an innovative computational framework that in-55
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tegrates single-cell and spatial transcriptomics data. This approach allows us to infer cell-cell56

communications based on the proximity of cells, whether short- or long-range, shedding light57

on the intricacies of senescence-associated intercellular signaling. This method offers a superior58

alternative to organoids, where only cell types interact in an artificial environment.59

Mapping individual cells to their spatial origins requires fine-grained mapping, which is prone60

to imprecise results due to the similarity within cell types and the non-linear relationship between61

gene expression levels in scRNA-seq and spatial transcriptomics [46]. Methods proposed for this62

task compute a similarity score in a shared latent space. This similarity score is then coupled63

with a statistical test to determine the significance of the assignment [46, 19]. Other techniques,64

e.g., canonical correlation analysis or non-negative matrix factorization, for constructing shared65

latent space have also been used [4, 43, 49]. In contrast, here, we utilize optimal transport66

[40, 45], a mathematical framework that allows for the comparison and matching of probability67

distributions. Specifically, we use optimal transport to learn the non-linear coupling between68

cells and spots by aligning the distributions of gene expression profiles across these two datasets.69

Our approach employs a probabilistic mapping, where the precision of the mapping is modulated70

by incorporating the coarse-grained mapping of cell types obtained from the deconvolution task.71

We solve these two complementary optimization tasks using a bilevel optimization approach [7],72

based on the differentiable deep declarative network [16] (Figure 1).73

Our approach incorporates two types of data, namely scRNA-seq and spatial transcriptomics,74

as inputs. It employs iterative computations to perform cell type deconvolution and cell-to-spot75

spatial mapping. As a result, it produces a coupling matrix between cells and spots that serves as76

an initial integration outcome. This coupling matrix is subsequently used to infer the cell-to-cell77

spatial neighborhood graph by aligning cells with spots possessing known spatial coordinates78

(see Figure 1). Essentially, the spot coordinates play a crucial role in determining the physical79

closeness between cells.80

We tested scDOT on both, simulated and new spatial data. As we show, it can accurately81

assign cells to their spot of origin outperforming prior methods for this task. For the new samples82

for idiopathic pulmonary fibrosis (IPF), scDOT identifies the spatial distribution and cell-cell83

interactions between senescence and non-senescence cells and the set of genes involved in these84

interactions.85
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Figure 1: Method workflow: scDOT takes gene expression profiles from a scRNA-seq dataset and a
spatial transcriptomics dataset as inputs. Additionally, cell type information for cells in the scRNA-
seq data and spatial coordinates for spots in the spatial transcriptomics data are provided. scDOT
simultaneously and in parallel learns the cell type fraction of each spot (deconvolution task) and
the mapping between individual cells in the scRNA-seq data and individual spots in the spatial
transcriptomics data (spatial reconstruction task). The resulting mapping matrix between cells and
spots is then utilized to construct the cell-cell spatial neighborhood graph, where cells are connected
if they are in close physical proximity.

2 Results86

We developed an optimal transport (OT) method for mapping scRNA-Seq data to spatial tran-87

criptomics data. The method, illustrated in Figure 1 performs iterative computations for cell88

type deconvolution and cell-to-spot spatial mapping, resulting in the generation of the coupling89

matrix γ as an upstream integration outcome. This coupling matrix is then utilized to infer the90

cell-to-cell spatial neighborhood graph by aligning cells to spots with known spatial coordinates.91

2.1 scDOT efficiently reconstructs individual cells to their spatial ori-92

gins93

We first tested scDOT on two simulation datasets where ground truth is known (Methods).94

The outcome of reconstructing single-cell data, i.e., the coupling matrix γ, when using simula-95

tion dataset 1 reveals that it successfully recovers the spatial origins of a high fraction of cells96

(56% to 76%, depending on a predefined threshold to determine high probability). γ represents97

probabilistic couplings and so a specific cell can be mapped to several location with different98

probabilities (which sum up to 1). We found that in most cases the distribution γ:,j exhibits is99
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exteremly heavy-tailed and places a disproportionately high amount of probability densities at100

0. We therefore defined a high probability of associating with a location based on distribution101

properties (99th-, 95th-, 90th-quantile, or the 75th quantile (the third quantile) plus 1.5 times102

the interquartile range (IQR) (Turkey’s fences)). Obviously, stricter the threshold, the fewer cells103

that are correctly matched. However, even for a very high cutoff we find very large percentage104

of correct matches (70% of cells at a threshold above the 90th quantile and 56% of cells at a105

threshold above the 99th quantile when using synthetic data 1). However, the slower decay of106

reconstruction results due to a more strict threshold is desirable and can be achieved through a107

heavier tail in the distribution γ:,j .108

In addition, previous studies show that cell type deconvolution methods tend to miss rare cell109

type [6]. In contrast when using OT we are able to map rare cell types to their spatial origins110

(Fig 2b). In our simulation data, four types of cells can be classified as rare: 2-Mesothelium111

and Submucosal Secretory have only 1 cell each, Myofibroblasts has 2, and Fibromyocytes has112

7. The boxplots indicate that our approach successfully assigned all these rare cell types to their113

correct spatial positions.114

2.2 Comparison to other methods on spatial mapping and cell type115

deconvolution116

Spatial mapping We evaluate the performance of scDOT in spatial mapping and compare117

it with other existing methods. Figure 2a presents the results for Synthetic data 1, where the118

threshold is set above Q3 + 1.5×IQR. scDOT achieves the highest outcome at this threshold,119

while the outcome of Novosparc is drastically decreased compared to the outcome at thresholds120

above the 90th and 95th quantiles. This observation suggests that our probabilistic mapping121

exhibits a heavier-tailed characteristic, which is a more desirable property for accurate spatial122

mapping.123

Furthermore, we find that the reconstruction results are influenced by the dataset used. For124

Synthetic data 2, scDOT achieves a high outcome when the threshold is set above Q3 + 1.5×IQR,125

with 76% of cells successfully reconstructed. However, stricter thresholds lead to a more rapid126

decay in the outcomes, with only 50% of cells being reconstructed at the threshold above the127

95th quantile. Nevertheless, across all cases, scDOT consistently outperforms both Novosparc128

and the naive baseline of Random Sinkhorn.129

In terms of accurately mapping rare cell types to their spatial positions, scDOT successfully130

assigns all four rare cell types with a fraction of 1.0. However, Novosparc failed to accurately131
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Figure 2: Performance on synthetic datasets. (a) OT results of simulation datasets 1 and 2 demon-
strate that by using different thresholds to define a high probability, we can assign nearly 80% of
cells to their spatial origin. scDOT was benchmarked against two other methods: Novosparc, a
spatial reconstruction method based on Gromov-Wasserstein distance, and Random Sinkhorn, a
naive method that learns the optimal transport coupling with a random cost matrix. The results
demonstrate the superior performance of scDOT in all cases. (b) Detailed results of simulation data
1 (with a threshold higher than the 3rd quantile plus 1.5 times the IQR) highlight the effective-
ness of scDOT and spatial mapping methods in general for rare cell types. The boxplots illustrate
the fraction of correctly reconstructed cells per cell type. Each point represents a single cell type
(c = 24). Among the considered rare cell types (2-Mesothelium and Submucosal Secretory with
1 cell, Myofibroblasts with 2 cells, and Fibromyocytes with 7 cells), scDOT successfully mapped
these rare cell types to their exact spatial locations (fraction = 1.0), while Novosparc failed to map
2-Mesothelium to its spatial location (fraction = 0.0). (c) The root-mean-square-error (RMSE) of
the deconvolved cell-type proportions compared to the ground truth is evaluated for synthetic data
2, consisting of 9 cell types across 3072 spots. scDOT, along with other methods including DestVI,
Tangram, and Novosparc, is compared in terms of RMSE. The boxplots demonstrate that scDOT
outperforms the other methods, as indicated by the lower RMSE values. The boxplots display the
median (middle line), 25th and 75th percentiles (box), and 5th and 95th percentiles (whiskers).
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map 2-Mesothelium to its spatial location, as indicated by a fraction of 0.0. Also, as indicated132

in Figure 2a, scDOT mapped 76% cells correctly while Novosparc mapped 56% cells correctly;133

these 20% differences is not shown in Figure 2b since the difference in the number of cells per134

cell type is not considered.135

Deconvolution To benchmark the results of cell type deconvolution, we applied scDOT to136

synthetic data 2 and compared it with three other methods: DestVI [29], Tangram [3], and137

Novosparc [37]. The synthetic dataset comprised nine cell types distributed across 3072 spots.138

We specifically chose these three deconvolution methods as they represent distinct computational139

techniques tailored for spatial transcriptomics data. DestVI is a probabilistic-based method,140

Tangram utilizes deep learning, and Novosparc is an OT-based method. All three methods141

require spatial transcriptomics data as input and scRNA-seq data as a reference. Comparing142

the root-mean-square-error (RMSE) of the deconvolved cell type proportions with the ground143

truth, scDOT outperformed the other three methods (see Figure 2c). The mean RMSE scores144

for scDOT, DestVI, Tangram, and Novosparc were 0.06, 0.15, 0.23, and 0.20, respectively. It’s145

worth noting that Novosparc is not designed for direct computation of cell type deconvolution146

but rather for mapping cells to spots. As a result, the deconvolution results are calculated by147

multiplying the coupling matrix γ with the cell-by-cell type relation matrix C, i.e., P = γ × C.148

2.3 Identfiying the spatial patterns of the distribution of specific cell149

types150

We used paired IPF scRNA-Seq and spatial dataset to test the ability of our mapping method to151

infer cell-cell interactions (Figure 3). Among the 29 cell types (Methods), Multiciliated, Secre-152

tory and Basal cells exhibited prominent and distinct spatial patterns. Notably, Multiciliated,153

Secretory, and Basal cells were found to be in close proximity to each other, both in the upper154

lobe and lower lobe of the tissue. This observation aligns with the traditional view of the airway155

epithelial mucosal layer, which incorporates basal cells in close proximity to secretory and ciliated156

cells, forming a tight unit. This unit serves as a physical barrier while remaining responsive to157

the inhaled environment through interactions with submucosal fibroblasts, smooth muscle cells158

and cells and molecules from the immune system [18].159

Secretory and multiciliated cells are known to be located in close proximity to each other160

within the respiratory tract, including the lungs. Together, they form a self-clearing mechanism161

that efficiently removes inhaled particles from the upper airways, preventing their transfer to162

deeper lung zones [9]. The coordinated action of multiciliated cells, with their motile cilia, and163
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secretory cells, responsible for mucus production and secretion, enables the effective clearance164

of inhaled particles and maintains the integrity of the respiratory system [27].165

Basal cells, positioned closer to the basement membrane, further contribute to the orga-166

nization and functioning of the airway epithelium. They provide structural support and are167

responsible for the regeneration and repair of the airway epithelial layer [18].168

The spatial organization of Multiciliated, Secretory, and Basal cells in close proximity to169

each other emphasizes their interdependence and coordinated functioning in maintaining the170

respiratory barrier and facilitating efficient clearance mechanisms. This finding underscores the171

significance of the spatial arrangement and interactions of diverse cell types within the airway172

epithelium for the overall homeostasis and defense of the respiratory system.173

Conversely, immune cell types such as Macrophages and T cells lineage, which were charac-174

terized by a larger number of cells, displayed a more scattered distribution throughout the tissue.175

Yet, the spatial distribution of these two cell types are complementary to some degree (Figure176

3 and 4, Supplementary figures), reflecting the fact that they are both important components177

of the immune system and play complementary roles in defending against infections and main-178

taining immune homeostasis. On the other hand, cell types with a smaller cell count, such as179

smooth muscle (consisting of only 2 cells in total), exhibited a spatial arrangement in adjacent180

spots (Supplementary figures).181

These patterns were also observed in the unpaired data, particularly with regards to the182

multiciliated lineage and secretory cell types (Figure 3), demonstrating the generality of our183

approach on unpaired datasets.184

2.4 Cell-cell proximity analysis185

To quantitatively illustrate the spatial distribution and proximity of multiciliated, secretory, and186

basal cells described in section 3.3 of this paper, we employed the neighborhood enrichment score.187

This score between two cell types represents the z-score derived from a permutation test that188

tallies the neighboring spots consisting of either cell type. Consistent with the spatial patterns189

depicted in section 3.3 and Figure 3, we observed the highest enrichment score between the190

multiciliated lineage and itself across various datasets (69.46 in the upper lobe of familial IPF191

paired data, 29.31 in the lower lobe of the same data, and 47.98 in the IPF unpaired data). The192

score between Multiciliated and Secretory cell types is also one of the highest (19.40 in the upper193

lobe of the paired dataset, 12.25 in the lower lobe, and 5.06 in the unpaired dataset). In contrast,194

the scores between Macrophages and T cells are among the lowest across datasets, with scores195

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.16.553591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553591


of -25, -5.75, and -15.83 in the upper lobe, lower lobe, and unpaired dataset, respectively. These196

scores reflect the fact that they are complementary, as indicated in section 3.3 (see Supplementary197

Figure 1). It is important to note that the neighborhood enrichment scores were estimated at198

the spot-level and only considered the dominant cell type of each spot, which is defined as the199

cell type with the highest proportion within that particular spot.200

At the cell level, we constructed a cell-cell spatial proximity graph based on OT placement201

(see Methods). The graph was then summarized by cell types, quantifying the physical prox-202

imity between each cell type by counting the direct neighboring cells within the same type (see203

Supplementary Figure 1d and e, Supplementary Table 1). Once again, the multiciliated lineage204

exhibited the highest normalized counts with itself across datasets, consistent with the results205

obtained from the enrichment score and described in Section 3.3. In the paired dataset, basal206

and secretory cells also demonstrated a strong association with the airway epithelium, providing207

additional evidence for the spatial organization of the respiratory system as discussed in Section208

3.3. In contrast, immune cells such as T cells and macrophages displayed connections to various209

cell types, reflecting their dispersed distribution throughout the tissue. Notably, in the IPF210

lung sample, fibroblast cells exhibited a distinct spatial pattern and were found to be in close211

proximity to 2-smooth muscle cells and myofibroblast cells, supporting previous research sug-212

gesting that α smooth muscle actin-expressing fibroblasts, referred to as myofibroblasts, serve as213

markers of progressive lung injury and play a central role in detrimental remodeling and disease214

progression [41, 20] (Supplementary Figure 1, Supplementary Table 1, Section 3.6).215

2.5 Identification of senescent markers216

For cellular senescence analysis, we profiled two new spatial datasets. The first included paired217

scRNA-Seq data from a familial IPF lung sample, and the other consists of unpaired data from218

an IPF lung sample (Methods).219

Paired data of familial IPF lung sample We first identified in the scRNA-seq data,220

cell types with a large fraction of cells exhibiting senescent. For this, we used a list of 68 senescent221

marker genes (Methods). Within each cell type, we separated the cells into senescent and non-222

senescent cells (Figure 4a, b). For this familial IPF lung sample, the ratio of senescent cells to223

non-senescent cells is low. For most cell types we observed very few senescent cells. For other we224

found more. For example, for Mast cells, T cell lineage, and Airway epithelium we identified 14%,225

13%, and 17%, respectively. We thus focused on these three cell types. for these we had 24, 193,226

and 3 senescent cells for Mast cells, T cell lineage, and Airway epithelium, respectively. Next,227
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Figure 3: Spatial distribution patterns of multiciliated, secretory, basal, and macrophage cells across
different datasets. Top: A UMAP representation of scRNA-seq data, along with the spatial patterns
of the selected cell types in the upper lobe slice of the paired familial IPF lung. Middle A UMAP
representation of scRNA-seq data and the corresponding cell types in the lower lobe slice of the
same sample. Bottom A UMAP representation and spatial distribution of selected cell types in the
unpaired IPF lung sample. Notably, multiciliated, secretory, and basal cell types exhibit distinct
and prominent spatial patterns. Importantly, these cell types consistently exhibit close proximity
to each other across all three datasets, consistent with previous studies on the organization of the
respiratory system [18, 9, 27].
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we manually annotated the regions where senescent cells from different cell types are collocated228

(Figure 4b, c). For these regions we computed differentially expressed genes (DEG) w.r.t. the229

rest of the tissue. As expected, given the way we selected these regions we found among the top230

ranked DEG IGFBP4 and IGFBP7 (t-test p-values are 1.1e-11 and 7.2e-07 respectively), which231

are both senescent marker genes (Figure 4d). We next performed gene set enrichment analysis232

(GSEA) with this ranked gene list and a gene set of 340 senescent markers (which is a superset233

of the 68 senescent marker genes set we used for re-annotation, Supplementary Data 1), we234

confirmed that cellular senescence is enriched–with p-value = 0.006002; FDR = 0.006002, and235

the normalized enrichment score is 1.726–in the annotated region (Figure 4d). The leading-edge236

subset of genes in this analysis comprised IGFBP4, IGFBP7, FGF7, THBS1, IGF1, IGFBP6,237

IL6, SERPINE2, PIM1, ALDH1A3, SERPINE1, COL1A2, ANGPTL4, CYP1B1, and PLAU.238

While IGFBP4 and IGFBP7 belong to the initial set of 68 senescent marker genes, the remaining239

genes are part of the larger set of 340 senescent marker genes. Of particular note, IGFBP4 and240

IGFBP7 are SASP factors that have been identified as key components needed for triggering241

senescence in young mesenchymal stem cells (MSC) [42]. The pro-senescent effects of IGFBP4242

and IGFBP7 are reversed by single or simultaneous immunodepletion of either proteins from the243

conditioned medium (CM) from senescent cells [42]. According to a previous study, prolonged244

IGF1 treatment leads to the establishment of a premature senescence phenotype characterized245

by a unique senescence network signature [34]. Combined IGF1/TXNIP-induced premature246

senescence can be associated with a typical secretory inflammatory phenotype that is mediated247

by STAT3/IL-1A signaling [34].248

2.6 Inferring Cell-Cell interactions driving senescence249

We also looked at the cell type neighborhood of senescent cells. These are summarized in Figure250

5a. We observe that senescent cells are often close to non-senescent cells of the same type (e.g.,251

senescent T cells to non-senescent T cells) which can explain why some cell types have a much252

higher percentage of senescent cells than others.253

Utilizing the CellPhoneDB [11], we further identified the ligand-receptor (LR) pairs involved254

in the cell-cell interactions within the neighborhood of senescent cells (i.e., within the graph255

G′) (Figure 5d). We observed that 11 senescent markers, namely B2M, CALR, CCL5, CD44,256

HMGB1, IGF1R, MIF, TNF, VIM, MMP9, and TNFRSF1B, were significantly overrepresented257

in the list of ligands and receptors identified by CellPhoneDB (hypergeometric test p-value =258

0.00072). Among the LR pairs involved in senescent-to-senescent cell-cell communication (i.e.,259

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.16.553591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553591


a b

c

d

M
ac
r L Fi
br

L

M
yo
fib
r

Figure 4: Analysis of cellular senescence reveals the spatial collocation of senescent cells. (a) The
number of senescent cells and non-senescent cells for each cell type is depicted. T cell lineage, mast
cells, and airway epithelium exhibit the highest fraction of senescent cells. (b) Spatial distribution
of senescent and non-senescent cells for the three aforementioned cell types. Notably, the three
different senescent cell types are spatially collocated in the upper left corner of the tissue. (c)
Differentially expressed genes for the manually annotated senescent region (colored in orange) in
the upper left corner of the tissue (as depicted in panel (b) of this figure and the upper right corner
of this panel). Among the top-ranked DEGs are IGFBP4 and IGFBP7, which are also senescent
marker genes. (d) Gene set enrichment analysis (GSEA) plot. The top-ranked DEGs (as shown in
panel (c) of this figure) are enriched in the gene set consisting of 340 senescent marker genes.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.16.553591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553591


between senescent T cells), most of the pairs include senescent marker genes. The other remaining260

LR pairs involve the HLA gene family (which is essential for T cell activation). For example,261

HLA-E acts as an inhibitory signal for NK and CD8 T cells—and depletion of HLA-E renders262

senescent cells susceptible to elimination by both NK and CD8 T cells [39]. Another LR pair263

involves S100A8, which increases with age, inducing inflammation and cellular senescence-like264

phenotypes in oviduct epithelial cells [35, 14].265

Unpaired data from IPF lung sample To demonstrate the general utility of the method266

for unpaired data, we performed the same analysis as described for the paired data mentioned267

above for another spatial dataset we profiled, this time without matched scRNA-Seq (Methods).268

Using a scRNA-seq dataset of an IPF lung sample, we were still able to identify several of the269

same senescence cell types as in the paired dataset, including T cells and mast cells. There were270

300 assigned senescent cells out of the total 3747 T cells and 11 assigned senescent mast cells271

out of the total 249 mast cells. We also observed high fraction of senescence cells for other cell272

types including for fibroblasts (290 out of the total 461 fibroblast cells) and 2-smooth muscle (8273

out of 21).274

We again observed that senescence cells co-localized in the same regions (Figure 6a). While275

T cells tended to be distributed throughout the tissue, there is a high fraction of senescent cells276

co-localized with fibroblasts and mast cells (Figure 6a). Fibroblasts and 2-smooth muscle cells277

co-localized in specific regions, with a total of four overlapping regions as depicted in Figure278

6a. Since senescent cells tend to co-localize with other cells of the same type, most senescent279

fibroblast cells and 2-smooth muscle cells also co-localized (except for the region in the upper280

left corner of the tissue, which exhibited only senescent fibroblast cells). These observations of281

senescent spatial distribution align with previous studies suggesting that senescent cells have282

the potential to influence neighboring cells through processes collectively referred to as the283

senescence-associated secretory phenotype [31].284

Figure 6b and c illustrate the physical proximity among cells of different cell types. Similar285

to the paired data of the familial IPF lung sample, senescent cells are closely clustered together286

and near cells of the same type. As shown in Figure 6b, the senescent T cells are adjacent to287

other T cells, mast cells, and macrophages. The cell-to-cell spatial neighborhood graph, with288

nodes representing senescent T cells and their immediate neighbors, is depicted in Figure 6c. The289

validity of this neighborhood graph is assessed in Supplementary Analysis. For a more specific290

focus on senescent fibroblasts, a cell-to-cell neighborhood graph can be found in Supplementary291

Figure 2.292
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Figure 5: Analysis of senescent cell-cell communication in the upper lobe of the familial IPF lung
sample. (a) The graph summarizes the spatial neighborhood of senescent mast cells and T cell
lineage. Nodes represent cell types, and edges indicate direct neighboring relations in physical
proximity. The size of each node corresponds to the number of cells within a cell type, while the
width of the edges represent the number of neighboring cells of a specific cell type (i.e., the total
node degree per neighboring cell type). Edges representing a small number of neighbors are omitted.
As can be seen, senescent cells are close to both non-senescent cells within the same cell types and
senescent cells belonging to different cell types. (b) Cell-cell spatial neighborhood of senescent
cells for the T cell lineage. The validity of this neighborhood graph is assessed in Supplementary
Analysis. (c) The subgraph of the cell-cell neighborhood depicted in panel (b), specifically showing
the cells located in the senescent region (colored orange). (d) The results from CellphoneDB display
the co-expressed ligand-receptor pairs between senescent cells of the T cell lineage and all other cells
within the subgraph illustrated in panel (c).

3 Discussion293

In this study, we introduced a novel method for integrating single-cell and spatial transcrip-294

tomics, addressing the simultaneous tasks of cell type deconvolution and spatial reconstruction.295

The challenge of spatial reconstruction lies in the non-linear relationship between gene expression296

profiles of single-cells and the spatial transcriptomics data [46], as well as the inherent uncer-297

tainty in high-resolution mapping. However, by incorporating internal references from cell type298

deconvolution, we can modulate and enhance the precision of this task.299

Our method, scDOT was shown to efficiently and accurately assign individual cells to their300

spatial origins using synthetic data. By combining OT and deconvolution scDOT improves301

on all prior methods we compared to. We also used scDOT to study and analyze new paired302

and unpaired spatial transcriptomics data from IPF and familial IPF lungs. We observed that303

senescent cells tend to co-localize in specific regions and are in close proximity to cells of the304

same type. While the distribution of senescent T cells appears sparse in both datasets, we305

noted a denser population of senescent fibroblast cells in the IPF lung compared to the familial306

IPF lung, which can be explained by the paracrine senescence and is consistent with previous307

studies indicating that senescent fibroblasts contribute to the pathogenesis of IPF through various308

mechanisms [1, 48, 26].309

The integration of single-cell and spatial transcriptomics has been a topic of interest in recent310

years [28], with a number of multiview learning approaches suggested [36]. A crucial aspect of311

this integration is assessing the similarity of gene expression levels between cells and spatial312

spots. Unlike prior methods that utilized optimal transport, which rely on fixed cost matrices to313

represent the dissimilarity between cells and spots, scDOT utilizes a differentiable optimization314

layer in a deep declarative network to dynamically learn the cost matrix [16]. This use of optimal315
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c

a

b

Figure 6: The analysis of senescent cell-cell neighborhood for unpaired IPF dataset. (a) Spatial
distribution of senescent and non-senescent cells for T cells, Mast cells, Fibroblasts, and 2-Smooth
muscle. Red rectangles indicate regions where senescent cells of multiple types are co-located.
(b) The graph summarizes the spatial neighborhood of senescent Fibroblasts and T cells. Nodes
represent cell types, and edges represent direct neighboring relations in physical proximity. The
size of the nodes corresponds to the number of cells within a cell type, and the width of the edges
corresponds to the number of neighboring cells of a specific cell type (i.e., the total node degree per
neighboring cell type). Edges representing a small number of neighbors are omitted. The graph
demonstrates that senescent cells are neighbors to non-senescent cells within the same cell types,
as well as to senescent cells belonging to different cell types. (c) The cell-cell spatial neighborhood
graph of senescent cells of the T cell lineage. The validity of this neighborhood graph is assessed in
Supplementary Analysis.
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transport can be formulated as a domain adaptation problem, and the learned cost matrix holds316

potential for further applications involving mass transportation between the two modalities of317

other types of data.318

Comparative studies and benchmarks exist for cell type deconvolution in spatial transcrip-319

tomics data [23, 24, 50]. Since there is no universal evaluation metric that applies to all scenarios,320

comparisons among methods depend on datasets and evaluation metrics used, such as root mean321

square error and Lin’s concordance correlation coefficient, which may not consistently correlate322

[23, 6]. In our paper, we compared our method with recent approaches representing compu-323

tational techniques like deep learning, probabilistic modeling, and optimal transport. While324

the performance of these methods may vary, certain high-performance methods, particularly325

Tangram [3], have been reported [23, 24, 50]. Additionally, note the normalization of our syn-326

thetic data 2, making methods utilizing count matrices as input, such as Stereoscope [2] and327

Cell2Location [21], inapplicable.328

An important component of our biological analysis focused on IPF and familial IPF lung329

tissue was the identification of senescent cells. Evaluating cellular senescence poses challenges330

as there are various approaches, such as assessing senescent gene markers or morphological331

features of senescent cells. Additionally, different cell types or diseases may require distinct332

sets of senescent markers due to the complex nature of the senescence process. In our study, we333

employed a combined list of senescent markers and categorized cells within each cell type as either334

senescent or non-senescent. However, senescent states can exist on a continuum, ranging from335

non-senescence to primary senescence, and different markers may be associated with primary and336

secondary senescence. Still, using scDOT we were able to identify cell-cell spatial neighborhood,337

which can aid in assessing senescent cells in close physical proximity. It also allowed us to explore338

how senescent cells reorganize and impact their environment and nearby cells. Cells neighboring339

senescent cells can transition into a secondary senescent state. Hence, the influence of senescence340

can be approached as a diffusion problem within a network, where cells reach a senescent state341

through contact with senescent neighbors. This network-based diffusion approach, relying on the342

spatial mapping of individual cells to their origins, holds promise for fruitful future investigations.343

scDOT is implemented in PyTorch and is available for download from344

https://github.com/namtk/scDOT.345
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4 Methods346

4.1 Data sets347

To investigate the effects of the proposed method that combines cell-type deconvolution and348

spatial reconstruction, we collected both synthetic and real data. Since there is no immediate349

method to assess the performance of cell-type deconvolution and spatial reconstruction tasks on350

real data, we generated two simulation datasets to evaluate and benchmark scDOT as well as351

other related methods against the ground truth. It is important to note that, for benchmarking352

the deconvolution task, methods designed for spatial reconstruction can be utilized. However,353

for benchmarking the reconstruction task, methods solely designed for cell-type deconvolution354

cannot be used, as inferring the fine-grained mapping γ of individual cells from a coarse-grained355

mapping P of cell clusters poses a challenging inverse problem, even though inferring the cell356

type proportion P from the coupling matrix γ is straightforward (P = γ × C).357

4.1.1 Synthetic data sets358

Synthetic data set 1 The synthetic data 1 is generated based on Gaussian Process (GP) by359

assuming that the nearby spots have similar proportions of cell types as well as gene expressions360

[29]. Here, we used scRNA-seq data of an IPF lung tissue and projected the cells from this data361

onto grids, which represent the spatial coordinates obtained from a different IPF lung sample’s362

upper lobe lung slice. Thus, scRNA-seq data is real while spatial locations are synthetic for this363

dataset. See Supporting methods for more details.364

Synthetic data set 2 For the synthetic data 2, we conducted simulations using gene ex-365

pression data from individual cells obtained through multiplex error-robust fluorescence in situ366

hybridization (MERFISH) in the mouse medial preoptic area (MPOA) [32, 33]. By aggregat-367

ing the gene expression information of cells within spatially contiguous pixels, we created a368

representation of the spatial organization. See Supporting Methods for more details.369

4.1.2 Real data sets370

Preparation and data collection of single-cell RNA sequencing and spatial371

transcriptomics Tissue samples were obtained by the Human Tissue Biorepository at The372

Ohio State University from the explanted lungs of patients diagnosed with idiopathic pulmonary373

fibrosis (IPF) and familial IPF after a Total Transplant Care Protocol informed consent and374
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research authorization from the patient. The tissue biorepository operates in accordance with375

NCI and ISBER Best Practices for Repositories.376

For single-cell RNA sequencing (scRNA-seq): Samples of 15 g of upper and lower lobe lung377

parenchyma tissue were washed with PBS, minced finely with scalpels, and digested using an378

enzyme cocktail (1 mg/mL of liberase DL, DNase I, DMEM) for 2 hours at 37◦C with rocking.379

Cell suspension was filtered through a serial filter of 300 µm, 100 µm, and 70 µm strainers.380

After straining, the cell suspension was centrifuged at 500g for 7 minutes, the supernatant was381

removed, and 1x RBC lysis buffer was added to the pellet and incubated at 4◦C for 7 minutes382

and then filtered through a 40 µm strainer to remove the agglomerated dead cells. Finally,383

cell number and viability were determined using a countess automatic cell counter (Invitrogen).384

Whole lung cell suspension was loaded on the Chromium Controller, according to 10x Genomics385

protocol. 3’ Gene Expression libraries were sequenced on Illumina sequencer with read lengths386

of 28 cycles Read 1, 10 cycles i7 index, 10 cycles i5 index, 90 cycles Read 2. ScRNA-seq data387

was extracted from the raw sequencing data using Cell Ranger (version 7.1.0, 10x Genomics).388

For spatial transcriptomics: Tissue sections of ≤ 6.5 x 6.5 mm from the upper and lower lobe389

of lung parenchyma were used for spatial analysis. After collection, samples were fixed for 24390

hours in 10% neutral buffered formalin and embedded in paraffin (wax) to create a formalin-fixed391

paraffin-embedded (FFPE) block. Sections of 5µm were then cut from the FFPE blocks onto392

Visium slides (10x Genomics) and processed according to the manufacturer’s protocol. Scan393

of H&E staining was performed with EVOSTM M7000 microscope (Invitrogen) using a 10x394

objective. FFPE libraries were prepared according to 10x Genomics protocol and sequenced on395

Illumina sequencer to a read depth of at least 25k reads/spot, with read lengths of 28 cycles396

Read 1, 10 cycles i7 index, 10 cycles i5 index, 50 cycles Read 2. Spatial transcriptomics data397

was extracted from the raw sequencing data using Space Ranger (version 2.0.0, 10x Genomics).398

Paired familial IPF lung data set We obtained two paired datasets of single-cell and399

spatial transcriptomics from a patient with familial IPF lung, one of which is from the upper400

lobe slice and the other from the lower lobe slice. The upper lobe pair contains 6762 cells and401

3336 spots while the lower lobe pair contains 6173 cells and 2246 spots. For each of these two402

paired datasets, we preprocessed the data by (1) removing lowly expressed genes of both two403

data modalities, keeping genes that have at least 10 counts, and (2) removing cells with low404

counts, keeping cells that have at least 500 counts and 500 genes expressed, then (3) obtaining405

the common gene sets for both modalities by taking the intersection of the two gene sets.406

The cell type annotations were transferred from the Lung cell atlas (HLCA) using scArches407
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and FastGenomics platform.408

To re-annotate cells that reflect senescent states, we utilized a list of 68 senescent markers409

(Supplementary Data 1), then calculated the average expression of the marker genes across all410

cells. Next, senescent cells were identified as having a higher than 95 percentile of average411

expression of the marker genes.412

Unpaired IPF lung data set To demonstrate the general utility of the method even for413

non-paired data, we obtained an unpaired scRNA-seq and spatial transcriptomics dataset from414

two different IPF patients. While the preparation for spatial transcriptomics is the same as for415

the paired data, the preparation for single-cell RNA sequencing is described as follows. Single-cell416

sequencing of human lung tissue was performed as previously described [44, 17]. In short, human417

lung tissue (IPF) was homogenized, and 4 g of tissue were digested by dispase/collagenase (Col-418

lagenase: 0.1U/mL, Dispase: 0.8U/mL, Roche) for 1 hour at 37◦C. Samples were successively419

filtered through nylon filters (100 µm and 20 µm) followed by a percoll gradient. Single ep-420

ithelial cell suspensions were loaded onto a Chromium single-cell chip (Chromium™Single Cell 3’421

Reagent Kit, v2 Chemistry) to obtain single-cell 3’ libraries for sequencing. cDNA obtained after422

droplet reverse transcription was amplified for 14 cycles and analyzed using Agilent Bioanalyzer.423

The barcoded libraries were sequenced using Illumina NextSeq-500 through the University of424

Pittsburgh Genomics Core Sequencing Facility, aiming for 100,000 reads per cell and capturing425

10,000 per library.426

The single-cell data contains 25,260 cells, and the spatial data, which consists of an upper427

lobe lung slide, contains 3,412 spots. The preprocessing, cell type annotation, and senescence428

re-annotation were carried out following the same procedures as for the paired familial IPF lung429

dataset.430

It is important to note that, since the familial IPF lung datasets are paired, the coordinates431

of cells after spatial reconstruction represent the actual tissue coordinates. However, for the432

unpaired IPF lung dataset, the inferred cell coordinates do not directly reflect the actual tissue433

coordinates. Instead, they serve as an intermediate step to infer the relative spatial relationships434

among cells.435

4.2 Cell type deconvolution436

For gene expression, cell type deconvolution can be formulated as a nonnegative least squares

(NNLS) problem, where the goal is to estimate the relative abundances of different cell types by

solving for the nonnegative coefficients of a linear combination of their respective gene expression
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profiles. Specifically, a multicellular resolution spatial transcriptomics profile Y ∈ Rm×p of p

genes across m spots each of which contains transcripts from multiple cells can be represented

as Y = PS in which P ∈ Rm×c is the cell type proportions to be estimated and S ∈ Rc×p is the

signature matrix consisting of known gene expression profiles for each cell type of the total c cell

types. We solved for P the following nonnegative least squares problem:

P ∗ ∈ argmin
P≥0

∥Y − PS∥F (1)

There are several solvers available for solving a NNLS problem, including Lawson-Hanson’s437

active set method [22]. Here, we used projected gradient descent [25].438

4.3 Mapping single cell to spatial images439

The spatial reconstruction task involves assigning cells from scRNA-seq data to a predicted

corresponding location in a tissue sample. Note that such assignment, implicitly, also provides

deconvolution of the spot data assuming that the cell types for cells in the scRNA-Seq data are

known. Here we formulate this as an optimal transport (OT) problem from scRNA-seq dataset

X ∈ Rn×p of p genes across n cells to spatial transcriptomics dataset Y ∈ Rm×p of p genes across

m. OT is commonly used to model the coupling between two probability distribution. In our case

we use it to model the transport of gene expression from one dataset to another in an optimal way.

By solving the optimal transport problem, it is possible to estimate the optimal coupling and

quantify the degree of similarity between the datasets. Formulating the spatial reconstruction

task as an optimal transport problem involves constructing a cost matrixM ∈ Rm×n
+ representing

distances between cells of X and spots of Y . Here, we used cosine distance dcos(Xi,:, Yj,:) =

1− ⟨Xi,:,Yj,:⟩
∥Xi,:∥·∥Yj,:∥ , which is scale-invariant and can account for differences in measurement sensitivity

between the two technologies. Furthermore, scale-invariant cosine dissimilarity is well-suited for

handling the fact that expression of a spot in the spatial transcriptomics dataset is the mixture

or sum of multiple cells in the scRNA-seq dataset. Specifically, the coupling matrix γ ∈ Rm×n
+

is solved for obtaining the optimal transport as follows:

γ∗ ∈ argminγ∈Rm×n
+

∑
i,j γi,jMi,j + λΩ(γ)

s.t. γ1 = m; γT 1 = n; γ ≥ 0
(2)

where M ∈ Rm×n
+ is the cost matrix defining the cost of moving gene expression from cell ai to440

spot bj and Ω(γ) =
∑

i,j γi,j log (γi,j) is an entropic regularization term [8]. The entropic regu-441
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larization version of optimal transport can be solved by Sinkhorn-Knopp’s alternative projection442

algorithm [8]. In other words, this minimization process aims to match cells with similar expres-443

sion profiles to spots with similar transcriptomic characteristics, measured by cosine similarity,444

thereby capturing the underlying biological relationships between the two datasets.445

It is important to note that we utilized the entropy regularization version of optimal trans-446

port, resulting in a probabilistic mapping between cells and spots. This probabilistic coupling,447

represented by the left-stochastic matrix γ, indicates the likelihood of a specific cell being as-448

sociated with a particular spot. This probabilistic coupling offers computational efficiency and449

eliminates assumptions about the number of cells in a spot, including cases where a cell may450

reside on the boundary of two spots.451

4.4 Combination of deconvolution and mapping452

OT for spatial and scRNA-Seq data is challenging since spatial data is often sparse leading to453

less dependable inferred individual cell-spot pairs. We thus further extend OT by incorporat-454

ing the deconvolution result, which, as mentioned above, maps a group of cells to a group of455

spots. As a result, scDOT integrates the two mentioned data modalities, single-cell and spatial456

transcriptomics, by simultaneously solving the deconvolution and OT problems. Specifically,457

given paired data modalities X and Y , representing gene expression profiles of a scRNA-seq458

and a spatial transcriptomics data respectively, scDOT simultaneously solves the deconvolution459

problem of estimating cell type fractions, P , of c cell types across m spots, and the spatial recon-460

struction problem of mapping n cells to their m spatial origins, resulting in a coupling matrix461

γ. These two solutions are constrained by the relation γ × C = P , where C is a binary matrix462

representing the cell type of each cell, encoded as a one-hot vector of size 1× c across the total n463

cells. The two results, P and γ, are computed simultaneously in an iterative manner in order to464

improve each other’s accuracy. The problem is then formed as a bi-level optimization where the465

deconvolution and the spatial reconstruction are two inner optimization problems nested inside466

the outer optmimization that reflects the relation γ×C = P . See Supporting Methods for more467

details.468

4.5 Inference of cell-cell spatial neighborhood graph469

Utilizing the coupling matrix learned from optimal transport, we employed manifold alignment

[47, 36] to project the single-cell data X and spatial coordinates Z ∈ Rm×2 of spatial transcrip-

tomics data onto a common nonlinear subspace. This subspace preserves the correspondence
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between cells and spots, as well as the intrinsic similarity within each dataset. Consequently,

in the common subspace, cells are represented in terms of both gene expression and spatial

coordinates. Subsequently, we constructed a k-nearest neighbor graph (k-NNG) based on this

new representation, which consists of the new coordinates in the common subspace for each cell.

This allowed us to obtain the cell-cell spatial neighborhood graph. (In our experiments, we set

k = 10.) The projections f and g resulting from manifold alignment serve as minimizers of the

following optimization problem, which can be formulated as a generalized eigenvalue problem:

f∗, g∗ =argmin
f,g

(1− µ)
m∑
i=1

n∑
j=1

∥f (xi)− g (zj)∥22 γ
i,j

+ µ
m∑
i=1

n∑
j=1

∥f (xi)− f (xj)∥22 W
i,j
X

+ µ
m∑
i=1

n∑
j=1

∥g (xi)− g (zj)∥22 W
i,j
Z

(3)

where WX and WZ are adjacent matrices of kNN graphs of X and Z, respectively.470
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