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Abstract 

The low resolution of spatial transcriptomics data necessitates additional information 
for optimal use. We developed scDOT, which combines spatial transcriptomics and sin-
gle cell RNA sequencing to improve the ability to reconstruct single cell resolved spa-
tial maps and identify senescent cells. scDOT integrates optimal transport and expres-
sion deconvolution to learn non-linear couplings between cells and spots and to infer 
cell placements. Application of scDOT to lung spatial transcriptomics data improves 
on prior methods and allows the identification of the spatial organization of senescent 
cells, their neighboring cells and novel genes involved in cell-cell interactions that may 
be driving senescence.

Background
Recent advancements in genomics technologies have facilitated the profiling of gene 
expression at the single-cell level, unveiling valuable insights regarding the molecular 
heterogeneity of complex biological systems. While single-cell RNA sequencing (scRNA-
seq) has significantly enhanced our comprehension of cell-type diversity, it lacks spatial 
information due to the dissociation of cells. Spatial transcriptomics (ST) techniques ena-
ble the preservation of spatial information within tissue samples but typically offer lower 
resolution or coverage compared to scRNA-seq data. Hence, the integration of scRNA-
seq and ST data becomes imperative for acquiring a spatially informed single-cell res-
olution dataset [1]. This integration approach not only ensures a more comprehensive 
understanding of the molecular heterogeneity within complex biological systems but 
also retains the spatial context of gene expression.

Existing methods for integrating single-cell and spatial transcriptomics data primarily 
focus on cell-type deconvolution. These methods decompose gene expression in a spa-
tial spot into linear combinations of fractions attributed to different cell types, utilizing 
the single-cell data solely as a reference [2–9]. While successful, these methods often 
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struggle when it comes to cell types with only a few cells [10–12]. Moreover, in cases 
where these smaller cell types are very similar to cell types with larger number of cells, 
the assignment of deconvolution methods often completely ignore these smaller cell 
types as shown in Results.

Cellular senescence, a state of permanent growth arrest, is implicated in various age-
related diseases. Understanding cellular senescence requires analyzing cell-cell commu-
nications at the individual cell level, as the process exhibits heterogeneity, where only 
a few cells within a given cell type enter a senescent state simultaneously. Additionally, 
paracrine senescence, in which a senescent cell can induce senescence in neighboring 
cells, is of significant importance. Effective communication between senescent cells and 
neighboring cells is crucial for the progression and maintenance of the senescent phe-
notype [13, 14]. Senescent cells actively engage in intercellular communication, primar-
ily through the secretion of senescence-associated secretory phenotype (SASP) factors, 
influencing neighboring and distant cells [14, 15]. However, the mechanisms underlying 
these communications remain poorly understood. To address this gap, and to enable the 
study of cell-cell interactions for these small number of senescent cells within a cell type 
using spatial transcriptomics, we propose an innovative computational framework that 
integrates single-cell and spatial transcriptomics data. This approach allows us to infer 
cell-cell communications based on the proximity of cells, whether short- or long-range, 
shedding light on the intricacies of senescence-associated intercellular signaling. This 
method offers a superior alternative to organoids, where only cell types interact in an 
artificial environment.

Mapping individual cells to their spatial origins requires fine-grained mapping, which 
is prone to imprecise results due to the similarity within cell types and the non-linear 
relationship between gene expression levels in scRNA-seq and spatial transcriptomics 
[16]. Methods proposed for this task compute a similarity score in a shared latent space. 
This similarity score is then coupled with a statistical test to determine the significance 
of the assignment [16, 17]. Other techniques, e.g., canonical correlation analysis or non-
negative matrix factorization, for constructing shared latent space have also been used 
[18–20]. In contrast, here, we utilize optimal transport [21, 22], a mathematical frame-
work that allows for the comparison and matching of probability distributions. Spe-
cifically, we use optimal transport to learn the non-linear coupling between cells and 
spots by aligning the distributions of gene expression profiles across these two datasets. 
Our approach employs a probabilistic mapping, where the precision of the mapping is 
modulated by incorporating the coarse-grained mapping of cell types obtained from 
the deconvolution task. We solve these two complementary optimization tasks using a 
bilevel optimization approach [23], based on the differentiable deep declarative network 
[24] (Fig. 1).

Our approach incorporates two types of data, namely scRNA-seq and spatial tran-
scriptomics, as inputs. It employs iterative computations to perform cell type deconvolu-
tion and cell-to-spot spatial mapping. As a result, it produces a coupling matrix between 
cells and spots that serves as an initial integration outcome. This coupling matrix is sub-
sequently used to infer the cell-to-cell spatial neighborhood graph by aligning cells with 
spots possessing known spatial coordinates (see Fig. 1). Essentially, the spot coordinates 
play a crucial role in determining the physical closeness between cells.
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We tested scDOT on both, simulated and new spatial data. As we show, it can accu-
rately assign cells to their spot of origin outperforming prior methods for this task. For 
the new samples for idiopathic pulmonary fibrosis (IPF), scDOT identifies the spatial 
distribution and cell-cell interactions between senescence and non-senescence cells and 
the set of genes involved in these interactions.

Results
We developed an optimal transport (OT) method for mapping scRNA-Seq data to spa-
tial transcriptomics data. The method, illustrated in Fig.  1, performs iterative compu-
tations for cell type deconvolution and cell-to-spot spatial mapping, resulting in the 
generation of the coupling matrix γ as an upstream integration outcome. This coupling 
matrix is then utilized to infer the cell-to-cell spatial neighborhood graph by aligning 
cells to spots with known spatial coordinates.

scDOT efficiently reconstructs individual cells to their spatial origins

We first tested scDOT on two simulation datasets where ground truth is known 
(Methods). The outcome of reconstructing single-cell data, i.e., the coupling matrix 
γ , when using simulation dataset 1 reveals that it successfully recovers the spatial ori-
gins of a high fraction of cells (56% to 76%, depending on a predefined threshold to 
determine high probability). γ represents probabilistic couplings and so a specific cell 
can be mapped to several location with different probabilities (which sum up to 1). 
We found that in most cases the distribution γ:,j exhibits is extremely heavy-tailed 
and places a disproportionately high amount of probability densities at 0. We there-
fore defined a high probability of associating with a location based on distribution 
properties (99th, 95th, 90th quantile, or the 75th quantile (the third quantile) plus 
1.5 times the interquartile range (IQR) (Turkey’s fences)). Obviously, the stricter the 

Fig. 1 Method workflow: Step 1: scDOT takes gene expression profiles from a scRNA-seq dataset and a 
spatial transcriptomics dataset as inputs. Additionally, cell type information for cells in the scRNA-seq data 
and spatial coordinates for spots in the spatial transcriptomics data are provided. scDOT simultaneously and 
in parallel learns the cell type fraction of each spot (deconvolution task) and the mapping between individual 
cells in the scRNA-seq data and individual spots in the spatial transcriptomics data (spatial reconstruction 
task). Step 2: The resulting mapping matrix between cells and spots is then utilized to construct the cell-cell 
spatial neighborhood graph, where cells are connected if they are in close physical proximity
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threshold, the fewer cells that are correctly matched. However, even for a very high 
cutoff, we find very large percentage of correct matches (70% of cells at a threshold 
above the 90th quantile and 56% of cells at a threshold above the 99th quantile when 
using synthetic data 1). However, the slower decay of reconstruction results due to 
a more strict threshold is desirable and can be achieved through a heavier tail in the 
distribution γ:,j.

In addition, previous studies show that cell type deconvolution methods tend to 
miss rare cell type [10]. In contrast, when using OT, we are able to map rare cell types 
to their spatial origins (Fig. 2b). In our simulation data, four types of cells can be clas-
sified as rare: 2-Mesothelium and Submucosal Secretory have only 1 cell each, Myofi-
broblasts has 2, and Fibromyocytes has 7. The boxplots indicate that our approach 
successfully assigned all these rare cell types to their correct spatial positions.

Fig. 2 Performance on synthetic datasets. a OT results of simulation datasets 1 and 2 demonstrate that 
by using different thresholds to define a high probability, we can assign nearly 80% of cells to their spatial 
origin. scDOT was benchmarked against two other methods: Novosparc, a spatial reconstruction method 
based on Gromov-Wasserstein distance, and Random Sinkhorn, a naive method that learns the optimal 
transport coupling with a random cost matrix. The results demonstrate the superior performance of scDOT 
in all cases. b Detailed results of simulation data 1 (with a threshold higher than the 3rd quantile plus 1.5 
times the IQR) highlight the effectiveness of scDOT and spatial mapping methods in general for rare cell 
types. The boxplots illustrate the fraction of correctly reconstructed cells per cell type. Each point represents 
a single cell type ( c = 24 ). Among the considered rare cell types (2-Mesothelium and Submucosal Secretory 
with 1 cell, Myofibroblasts with 2 cells, and Fibromyocytes with 7 cells), indicated within red circles, scDOT 
successfully mapped these rare cell types to their exact spatial locations (fraction = 1.0), while Novosparc 
failed to map 2-Mesothelium to its spatial location (fraction = 0.0). c The root-mean-square-error (RMSE) 
of the deconvolved cell-type proportions compared to the ground truth is evaluated for synthetic data 2, 
consisting of 9 cell types across 3072 spots. scDOT, along with other methods including DestVI, Tangram, 
and Novosparc, is compared in terms of RMSE. The boxplots demonstrate that scDOT outperforms the other 
methods, as indicated by the lower RMSE values. The boxplots display the median (middle line), 25th and 
75th percentiles (box), and 5th and 95th percentiles (whiskers)
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Comparison to other methods on spatial mapping and cell type deconvolution

Spatial mapping We evaluate the performance of scDOT in spatial mapping and com-
pare it with other existing methods. Figure 2a presents the results for synthetic data 1, 
where the threshold is set above Q3 + 1.5×IQR. scDOT achieves the highest outcome at 
this threshold, while the outcome of Novosparc is drastically decreased compared to the 
outcome at thresholds above the 90th and 95th quantiles. This observation suggests that 
our probabilistic mapping exhibits a heavier-tailed characteristic, which is a more desir-
able property for accurate spatial mapping.

Moreover, we find that the reconstruction results are influenced by the dataset used. 
For synthetic data 2, scDOT achieves a high outcome when the threshold is set 
above Q3 + 1.5×IQR, with 76% of cells successfully reconstructed. However, stricter 
thresholds lead to a more rapid decay in the outcomes, with only 50% of cells being 
reconstructed at the threshold above the 95th quantile. Nevertheless, across all cases, 
scDOT consistently outperforms both Novosparc and the naive baseline of Random 
Sinkhorn. We also tested scDOT using another simulated dataset based on a new 
Xenium single-cell data from a breast cancer tumor microenvironment [25]. Again, 
we observed that scDOT performs well and is superior to Novosparc, achieving very 
high accuracy (Additional file 1: B.2, Fig. S1).

In terms of accurately mapping rare cell types to their spatial positions, scDOT suc-
cessfully assigns all four rare cell types with a fraction of 1.0. However, Novosparc 
failed to accurately map 2-Mesothelium to its spatial location, as indicated by a frac-
tion of 0.0. Also, as indicated in Fig.  2a, scDOT mapped 76% cells correctly while 
Novosparc mapped 56% cells correctly; these 20% differences is not shown in Fig. 2b 
since the difference in the number of cells per cell type is not considered. Finally, we 
conducted an analysis of scDOT’s performance on rare cell types by varying the frac-
tion of B cells in the dataset. Results, presented in the Additional file 1: B.3, demon-
strate the robustness of scDOT for mapping rare cell types.

Deconvolution To benchmark the results of cell type deconvolution, we applied scDOT 
to synthetic data 2 and compared it with three other methods: DestVI [7], Tangram [26], 
and Novosparc [27]. The synthetic dataset comprised nine cell types distributed across 
3072 spots. We specifically chose these three deconvolution methods as they repre-
sent distinct computational techniques tailored for spatial transcriptomics data. DestVI 
is a probabilistic-based method, Tangram utilizes deep learning, and Novosparc is an 
OT-based method. All three methods require spatial transcriptomics data as input and 
scRNA-seq data as a reference. Comparing the root-mean-square-error (RMSE) of the 
deconvolved cell type proportions with the ground truth, scDOT outperformed the 
other three methods (see Fig. 2c). The mean RMSE scores for scDOT, DestVI, Tangram, 
and Novosparc were 0.06, 0.15, 0.23, and 0.20, respectively. It is worth noting that Novo-
sparc is not designed for direct computation of cell type deconvolution but rather for 
mapping cells to spots. As a result, the deconvolution results are calculated by multiply-
ing the coupling matrix γ with the cell-by-cell type relation matrix C, i.e., P = γ × C . 
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We also used Pearson correlation coefficient (PCC) analysis for this benchmark study. 
Result still demonstrate the superiority of scDOT over other methods, albeit with high 
variance (see Fig. S2).

Identfiying the spatial patterns of the distribution of specific cell types

We used paired IPF scRNA-Seq and spatial dataset to test the ability of our mapping 
method to infer cell-cell interactions (Fig. 3). Among the 29 cell types (Methods), mul-
ticiliated, secretory, and basal cells exhibited prominent and distinct spatial patterns. 
Notably, multiciliated, secretory, and basal cells were found to be in close proximity to 
each other, both in the upper lobe and lower lobe of the tissue. This observation aligns 
with the traditional view of the airway epithelial mucosal layer, which incorporates 
basal cells in close proximity to secretory and ciliated cells, forming a tight unit. This 
unit serves as a physical barrier while remaining responsive to the inhaled environment 
through interactions with submucosal fibroblasts, smooth muscle cells and cells and 
molecules from the immune system [28].

Secretory and multiciliated cells are known to be located in close proximity to each 
other within the respiratory tract, including the lungs. Together, they form a self-clear-
ing mechanism that efficiently removes inhaled particles from the upper airways, pre-
venting their transfer to deeper lung zones [29]. The coordinated action of multiciliated 
cells, with their motile cilia, and secretory cells, responsible for mucus production and 
secretion, enables the effective clearance of inhaled particles and maintains the integrity 
of the respiratory system [30].

Fig. 3 Spatial distribution patterns of multiciliated, secretory, basal, and macrophage cells across different 
datasets. Top: A UMAP representation of scRNA-seq data, along with the spatial patterns of the selected cell 
types in the upper lobe slice of the paired familial IPF lung. Middle: A UMAP representation of scRNA-seq data 
and the corresponding cell types in the lower lobe slice of the same sample. Bottom: A UMAP representation 
and spatial distribution of selected cell types in the unpaired IPF lung sample. Notably, multiciliated, 
secretory, and basal cell types exhibit distinct and prominent spatial patterns. Importantly, these cell types 
consistently exhibit close proximity to each other across all three datasets, consistent with previous studies 
on the organization of the respiratory system [28–30]
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Basal cells, positioned closer to the basement membrane, further contribute to the 
organization and functioning of the airway epithelium. They provide structural support 
and are responsible for the regeneration and repair of the airway epithelial layer [28].

The spatial organization of multiciliated, secretory, and basal cells in close proximity to 
each other emphasizes their interdependence and coordinated functioning in maintain-
ing the respiratory barrier and facilitating efficient clearance mechanisms. This finding 
underscores the significance of the spatial arrangement and interactions of diverse cell 
types within the airway epithelium for the overall homeostasis and defense of the res-
piratory system.

Conversely, immune cell types such as Macrophages and T cells lineage, which were 
characterized by a larger number of cells, displayed a more scattered distribution 
throughout the tissue. Yet, the spatial distribution of these two cell types are comple-
mentary to some degree (Figs.  3 and  4, Fig. S3), reflecting the fact that they are both 
important components of the immune system and play complementary roles in 

Fig. 4 Analysis of cellular senescence reveals the spatial collocation of senescent cells. a The number 
of senescent cells and non-senescent cells for each cell type is depicted. T cell lineage, mast cells, and 
airway epithelium exhibit the highest fraction of senescent cells. b Spatial distribution of senescent and 
non-senescent cells for the three aforementioned cell types. Notably, the three different senescent cell types 
are spatially collocated in the upper left corner of the tissue. c Differentially expressed genes for the manually 
annotated senescent region (colored in orange) in the upper left corner of the tissue (as depicted in b of this 
figure and the upper right corner of this panel). Among the top-ranked DEGs are IGFBP4 and IGFBP7, which 
are also senescent marker genes. d Gene set enrichment analysis (GSEA) plot. The top-ranked DEGs (as shown 
in panel (c) of this figure) are enriched in the gene set consisting of 340 senescent marker genes
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defending against infections and maintaining immune homeostasis. On the other hand, 
cell types with a smaller cell count, such as smooth muscle (consisting of only 2 cells in 
total), exhibited a spatial arrangement in adjacent spots (Fig. S3).

These patterns were also observed in the unpaired data, particularly with regards to 
the multiciliated lineage and secretory cell types (Fig. 3), demonstrating the generality of 
our approach on unpaired datasets. The difference between paired and unpaired data is 
quantified in detail in Additional file 1 (B.4).

Cell‑cell proximity analysis

To quantitatively illustrate the spatial distribution and proximity of multiciliated, secre-
tory, and basal cells described in the previous section and shown in Fig. 3, we employed 
the neighborhood enrichment score. This score between two cell types represents the 
z-score derived from a permutation test that tallies the neighboring spots consisting 
of either cell type. Consistent with the spatial patterns depicted in Sect. 3.3 and Fig. 3, 
we observed the highest enrichment score between the multiciliated lineage and itself 
across various datasets (69.46 in the upper lobe of familial IPF paired data, 29.31 in the 
lower lobe of the same data, and 47.98 in the IPF unpaired data). The score between 
multiciliated and secretory cell types is also one of the highest (19.40 in the upper lobe of 
the paired dataset, 12.25 in the lower lobe, and 5.06 in the unpaired dataset). In contrast, 
the scores between macrophages and T cells are among the lowest across datasets, with 
scores of − 25, − 5.75, and − 15.83 in the upper lobe, lower lobe, and unpaired dataset, 
respectively. These scores reflect the fact that they are complementary, as indicated in 
Sect. 3.3 (see Fig. S3). It is important to note that the neighborhood enrichment scores 
were estimated at the spot-level and only considered the dominant cell type of each spot, 
which is defined as the cell type with the highest proportion within that particular spot.

At the cell level, we constructed a cell-cell spatial proximity graph based on OT place-
ment (see the Methods section). The graph was then summarized by cell types, quanti-
fying the physical proximity between each cell type by counting the direct neighboring 
cells within the same type (see Fig. S3d and e). Once again, the multiciliated lineage 
exhibited the highest normalized counts with itself across datasets, consistent with the 
results obtained from the enrichment score and described in Sect.  3.3. In the paired 
dataset, basal and secretory cells also demonstrated a strong association with the airway 
epithelium, providing additional evidence for the spatial organization of the respiratory 
system as discussed in Sect.  3.3. In contrast, immune cells such as T cells and mac-
rophages displayed connections to various cell types, reflecting their dispersed distri-
bution throughout the tissue. Notably, in the IPF lung sample, fibroblast cells exhibited 
a distinct spatial pattern and were found to be in close proximity to 2-smooth muscle 
cells and myofibroblast cells, supporting previous research suggesting that α smooth 
muscle actin-expressing fibroblasts, referred to as myofibroblasts, serve as markers of 
progressive lung injury and play a central role in detrimental remodeling and disease 
progression [31, 32] (Fig. S3, Sect. 3.6).
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Identification of senescent markers

For cellular senescence analysis, we profiled two new spatial datasets. The first included 
paired scRNA-Seq data from a familial IPF lung sample, and the other consists of 
unpaired data from an IPF lung sample (Methods).

Paired data of familial IPF lung sample We first identified in the scRNA-seq data, cell 
types with a large fraction of cells exhibiting senescent. For this, we used a list of 68 
senescent marker genes (Methods). Within each cell type, we separated the cells into 
senescent and non-senescent cells (Fig.  4a, b). For this familial IPF lung sample, the 
ratio of senescent cells to non-senescent cells is low. For most cell types, we observed 
very few senescent cells. For others, we found more. For example, for mast cells, T cell 
lineage, and airway epithelium, we identified 14%, 13%, and 17%, respectively. We thus 
focused on these three cell types. for these we had 24, 193, and 3 senescent cells for mast 
cells, T cell lineage, and airway epithelium, respectively. Next, we manually annotated 
the regions where senescent cells from different cell types are collocated (Fig.  4b, c). 
For these regions, we computed differentially expressed genes (DEG) w.r.t. the rest of 
the tissue. As expected, given the way we selected these regions, we found among the 
top ranked DEG IGFBP4 and IGFBP7 (t-test p-values are 1.1e−11 and 7.2e−07 respec-
tively), which are both senescent marker genes (Fig.  4d). We next performed gene set 
enrichment analysis (GSEA) with this ranked gene list and a gene set of 340 senescent 
markers (which is a superset of the 68 senescent marker genes set we used for re-annota-
tion, Additional file 2), we confirmed that cellular senescence is enriched−with p-value 
= 0.006002 ; FDR = 0.006002 , and the normalized enrichment score is 1.726−in the 
annotated region (Fig. 4d). The leading-edge subset of genes in this analysis comprised 
IGFBP4, IGFBP7, FGF7, THBS1, IGF1, IGFBP6, IL6, SERPINE2, PIM1, ALDH1A3, SER-
PINE1, COL1A2, ANGPTL4, CYP1B1, and PLAU. While IGFBP4 and IGFBP7 belong to 
the initial set of 68 senescent marker genes, the remaining genes are part of the larger set 
of 340 senescent marker genes. Of particular note, IGFBP4 and IGFBP7 are SASP factors 
that have been identified as key components needed for triggering senescence in young 
mesenchymal stem cells (MSC) [33]. The pro-senescent effects of IGFBP4 and IGFBP7 
are reversed by single or simultaneous immunodepletion of either proteins from the 
conditioned medium (CM) from senescent cells [33]. According to a previous study, pro-
longed IGF1 treatment leads to the establishment of a premature senescence phenotype 
characterized by a unique senescence network signature [34]. Combined IGF1/TXNIP-
induced premature senescence can be associated with a typical secretory inflammatory 
phenotype that is mediated by STAT3/IL-1A signaling [34].

Inferring cell‑cell interactions driving senescence

We also looked at the cell type neighborhood of senescent cells. These are summarized 
in Fig. 5a. We observe that senescent cells are often close to non-senescent cells of the 
same type (e.g., senescent T cells to non-senescent T cells) which can explain why some 
cell types have a much higher percentage of senescent cells than others.

Utilizing the CellPhoneDB [35], we further identified the ligand-receptor (LR) pairs 
involved in the cell-cell interactions within the neighborhood of senescent cells (i.e., 
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within the graph G′ ) (Fig.  5d). We observed that 11 senescent markers, namely B2M, 
CALR, CCL5, CD44, HMGB1, IGF1R, MIF, TNF, VIM, MMP9, and TNFRSF1B, were 
significantly overrepresented in the list of ligands and receptors identified by Cell-
PhoneDB (hypergeometric test p-value = 0.00072). Among the LR pairs involved in 

Fig. 5 Analysis of senescent cell-cell communication in the upper lobe of the familial IPF lung sample. 
a The graph summarizes the spatial neighborhood of senescent mast cells and T cell lineage. Nodes 
represent cell types, and edges indicate direct neighboring relations in physical proximity. The size of each 
node corresponds to the number of cells within a cell type, while the width of the edges represent the 
number of neighboring cells of a specific cell type (i.e., the total node degree per neighboring cell type). 
Edges representing a small number of neighbors are omitted. As can be seen, senescent cells are close to 
both non-senescent cells within the same cell types and senescent cells belonging to different cell types. 
b Cell-cell spatial neighborhood of senescent cells for the T cell lineage. The validity of this neighborhood 
graph is assessed in Additional file 1: B (Supplementary Analysis). c The subgraph of the cell-cell 
neighborhood depicted in panel (b), specifically showing the cells located in the senescent region (colored 
orange). d The results from CellphoneDB display the co-expressed ligand-receptor pairs between senescent 
cells of the T cell lineage and all other cells within the subgraph illustrated in panel (c)
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senescent-to-senescent cell-cell communication (i.e., between senescent T cells), most 
of the pairs include senescent marker genes. The other remaining LR pairs involve the 
HLA gene family (which is essential for T cell activation). For example, HLA-E acts as an 
inhibitory signal for NK and CD8 T cells-and depletion of HLA-E renders senescent cells 
susceptible to elimination by both NK and CD8 T cells [36]. Another LR pair involves 
S100A8, which increases with age, inducing inflammation and cellular senescence-like 
phenotypes in oviduct epithelial cells [37, 38].

Unpaired data from IPF lung sample To demonstrate the general utility of the method 
for unpaired data, we performed the same analysis as described for the paired data men-
tioned above for another spatial dataset we profiled, this time without matched scRNA-
Seq (Methods). Using a scRNA-seq dataset of an IPF lung sample, we were still able to 
identify several of the same senescence cell types as in the paired dataset, including T 
cells and mast cells. There were 300 assigned senescent cells out of the total 3747 T cells 
and 11 assigned senescent mast cells out of the total 249 mast cells. We also observed 
high fraction of senescence cells for other cell types including for fibroblasts (290 out of 
the total 461 fibroblast cells) and 2-smooth muscle (8 out of 21).

We again observed that senescence cells co-localized in the same regions (Fig.  6a). 
While T cells tended to be distributed throughout the tissue, there is a high fraction 
of senescent cells co-localized with fibroblasts and mast cells (Fig. 6a). Fibroblasts and 
2-smooth muscle cells co-localized in specific regions, with a total of four overlapping 
regions as depicted in Fig. 6a. Since senescent cells tend to co-localize with other cells of 
the same type, most senescent fibroblast cells and 2-smooth muscle cells also co-local-
ized (except for the region in the upper left corner of the tissue, which exhibited only 
senescent fibroblast cells). These observations of senescent spatial distribution align with 
previous studies suggesting that senescent cells have the potential to influence neighbor-
ing cells through processes collectively referred to as the senescence-associated secre-
tory phenotype [39].

Figure 6b, c illustrate the physical proximity among cells of different cell types. Similar 
to the paired data of the familial IPF lung sample, senescent cells are closely clustered 
together and near cells of the same type. As shown in Fig. 6b, the senescent T cells are 
adjacent to other T cells, mast cells, and macrophages. The cell-to-cell spatial neighbor-
hood graph, with nodes representing senescent T cells and their immediate neighbors, 
is depicted in Fig. 6c. The validity of this neighborhood graph is assessed in Additional 
file 1: B (Supplementary Analysis). For a more specific focus on senescent fibroblasts, a 
cell-to-cell neighborhood graph can be found in Fig. S4.

Discussion
In this study, we introduced a novel method for integrating single-cell and spatial tran-
scriptomics, addressing the simultaneous tasks of cell type deconvolution and spatial 
reconstruction. The challenge of spatial reconstruction lies in the non-linear relation-
ship between gene expression profiles of single-cells and the spatial transcriptomics 
data [16] as well as the inherent uncertainty in high-resolution mapping. However, by 
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incorporating internal references from cell type deconvolution, we can modulate and 
enhance the precision of this task.

Our method, scDOT, was shown to efficiently and accurately assign individual cells to 
their spatial origins using synthetic data. By combining OT and deconvolution scDOT 
improves on all prior methods we compared to. We also used scDOT to study and ana-
lyze new paired and unpaired spatial transcriptomics data from IPF and familial IPF 
lungs. We observed that senescent cells tend to co-localize in specific regions and are 
in close proximity to cells of the same type. While the distribution of senescent T cells 
appears sparse in both datasets, we noted a denser population of senescent fibroblast 
cells in the IPF lung compared to the familial IPF lung, which can be explained by the 
paracrine senescence and is consistent with previous studies indicating that senescent 
fibroblasts contribute to the pathogenesis of IPF through various mechanisms [40–42].

The integration of single-cell and spatial transcriptomics has been a topic of interest 
in recent years [1], with a number of multiview learning approaches suggested [43]. A 

Fig. 6 The analysis of senescent cell-cell neighborhood for unpaired IPF dataset. a Spatial distribution of 
senescent and non-senescent cells for T cells, mast cells, fibroblasts, and 2-smooth muscle. Red rectangles 
indicate regions where senescent cells of multiple types are co-located. b The graph summarizes the spatial 
neighborhood of senescent fibroblasts and T cells. Nodes represent cell types, and edges represent direct 
neighboring relations in physical proximity. The size of the nodes corresponds to the number of cells within 
a cell type, and the width of the edges corresponds to the number of neighboring cells of a specific cell type 
(i.e., the total node degree per neighboring cell type). Edges representing a small number of neighbors are 
omitted. The graph demonstrates that senescent cells are neighbors to non-senescent cells within the same 
cell types, as well as to senescent cells belonging to different cell types. c The cell-cell spatial neighborhood 
graph of senescent cells of the T cell lineage. The validity of this neighborhood graph is assessed in Additional 
file 1: B (Supplementary Analysis)
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crucial aspect of this integration is assessing the similarity of gene expression levels 
between cells and spatial spots. Unlike prior methods that utilized optimal transport, 
which rely on fixed cost matrices to represent the dissimilarity between cells and 
spots, scDOT utilizes a differentiable optimization layer in a deep declarative network 
to dynamically learn the cost matrix [24]. This use of optimal transport can be for-
mulated as a domain adaptation problem, and the learned cost matrix holds potential 
for further applications involving mass transportation between the two modalities of 
other types of data.

Comparative studies and benchmarks exist for cell type deconvolution in spatial 
transcriptomics data [2, 44, 45]. Since there is no universal evaluation metric that 
applies to all scenarios, comparisons among methods depend on datasets and evalu-
ation metrics used, such as root mean square error and Lin’s concordance correlation 
coefficient, which may not consistently correlate [10, 44]. In our paper, we compared 
our method with recent approaches representing computational techniques like deep 
learning, probabilistic modeling, and optimal transport. While the performance of 
these methods may vary, certain high-performance methods, particularly Tangram 
[26], have been reported [2, 44, 45]. We note that the normalization of our synthetic 
data 2 precludes comparisons to methods utilizing count matrices as input, such as 
Stereoscope [8] and Cell2Location [5].

Limitations of scDOT include its reliance on corresponding scRNA-Seq data, which 
may not be fully accessible or directly applicable to the spatial region under investiga-
tion. This can result in inaccuracies in mapping cells to spots. One approach to miti-
gate this issue is through the utilization of unbalanced optimal transport, a variant of 
the problem that does not necessitate equal masses for the two distributions. Explor-
ing this avenue is part of our future research agenda. Additionally, scDOT encounters 
challenges when faced with large spots containing 25 or more cells, especially of some 
of these cells are rare.

An important component of our biological analysis focused on IPF and familial IPF 
lung tissue was the identification of senescent cells. Evaluating cellular senescence 
poses challenges as there are various approaches, such as assessing senescent gene 
markers or morphological features of senescent cells. Additionally, different cell types 
or diseases may require distinct sets of senescent markers due to the complex nature 
of the senescence process. In our study, we employed a combined list of senescent 
markers and categorized cells within each cell type as either senescent or non-senes-
cent. However, senescent states can exist on a continuum, ranging from non-senes-
cence to primary senescence, and different markers may be associated with primary 
and secondary senescence. Still, using scDOT, we were able to identify cell-cell spatial 
neighborhood, which can aid in assessing senescent cells in close physical proximity. 
It also allowed us to explore how senescent cells reorganize and impact their envi-
ronment and nearby cells. Cells neighboring senescent cells can transition into a sec-
ondary senescent state. Hence, the influence of senescence can be approached as a 
diffusion problem within a network, where cells reach a senescent state through con-
tact with senescent neighbors. This network-based diffusion approach, relying on the 
spatial mapping of individual cells to their origins, holds promise for fruitful future 
investigations.
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scDOT is implemented in PyTorch and is available for download from https:// 
github. com/ namtk/ scDOT. The datasets used in this study are available as part of 
the Cellular Senescence Network [46] at https:// data. senne tcons ortium. org/ under 
identifiers SNT283.VJLG.263, SNT863.DDDW.723, SNT362.WCQB.995, SNT597.
VKCR.938, and SNT964.RXQC.298.

Conclusions
In conclusion, we presented scDOT, a novel method that integrates single-cell and 
spatial transcriptomics, improving upon existing approaches by incorporating cell type 
deconvolution and optimal transport. Our study demonstrates scDOT’s capability to 
accurately map individual cells to spatial origins, providing insights into cellular senes-
cence in IPF and familial IPF lung tissue. By analyzing senescent cell proximity and 
interactions, we highlighted the potential of scDOT in uncovering the spatial dynam-
ics of senescence. While scDOT faces challenges, such as reliance on scRNA-Seq data 
and limitations in mapping cells within large spatial spots, its application offers prom-
ising avenues for further research into senescence and disease progression.

Methods
Datasets

To investigate the effects of the proposed method that combines cell-type deconvolu-
tion and spatial reconstruction, we collected both synthetic and real data. Since there 
is no immediate method to assess the performance of cell-type deconvolution and 
spatial reconstruction tasks on real data, we generated two simulation datasets to 
evaluate and benchmark scDOT as well as other related methods against the ground 
truth. It is important to note that, for benchmarking the deconvolution task, methods 
designed for spatial reconstruction can be utilized. However, for benchmarking the 
reconstruction task, methods solely designed for cell-type deconvolution cannot be 
used, as inferring the fine-grained mapping γ of individual cells from a coarse-grained 
mapping P of cell clusters poses a challenging inverse problem, even though inferring 
the cell type proportion P from the coupling matrix γ is straightforward ( P = γ × C).

Synthetic datasets

Synthetic dataset 1 The synthetic data 1 is generated based on Gaussian process (GP) 
by assuming that the nearby spots have similar proportions of cell types as well as gene 
expressions [7]. Here, we used scRNA-seq data of an IPF lung tissue and projected the 
cells from this data onto grids, which represent the spatial coordinates obtained from 
a different IPF lung sample’s upper lobe lung slice. Thus, scRNA-seq data is real while 
spatial locations are synthetic for this dataset. See supporting methods for more details.

Synthetic dataset 2 For the synthetic data 2, we conducted simulations using gene 
expression data from individual cells obtained through multiplex error-robust fluores-
cence in situ hybridization (MERFISH) in the mouse medial preoptic area (MPOA) [11, 
47]. By aggregating the gene expression information of cells within spatially contiguous 

https://github.com/namtk/scDOT
https://github.com/namtk/scDOT
https://data.sennetconsortium.org/
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pixels, we created a representation of the spatial organization. See supporting methods 
for more details.

Real datasets

Preparation and data collection of single‑cell RNA sequencing and spatial transcriptom‑
ics Tissue samples were obtained by the Human Tissue Biorepository at The Ohio 
State University from the explanted lungs of patients diagnosed with idiopathic pulmo-
nary fibrosis (IPF) and familial IPF after a Total Transplant Care Protocol informed con-
sent and research authorization from the patient. The tissue biorepository operates in 
accordance with NCI and ISBER Best Practices for Repositories.

For single‑cell RNA sequencing (scRNA‑seq): Samples of 15 g of upper and lower lobe 
lung parenchyma tissue were washed with PBS, minced finely with scalpels, and 
digested using an enzyme cocktail (1 mg/mL of Liberase DL, DNase I, DMEM) for 2 
h at 37 ◦ C with rocking. Cell suspension was filtered through a serial filter of 300 µm, 
100 µm, and 70 µm strainers. After straining, the cell suspension was centrifuged at 
500g for 7 min, the supernatant was removed, and 1x RBC lysis buffer was added to 
the pellet and incubated at 4 ◦ C for 7 min and then filtered through a 40-µm strainer 
to remove the agglomerated dead cells. Finally, cell number and viability were deter-
mined using a countess automatic cell counter (Invitrogen). Whole lung cell suspen-
sion was loaded on the Chromium Controller, according to 10x Genomics protocol. 
3′ Gene Expression libraries were sequenced on Illumina sequencer with read lengths 
of 28 cycles Read 1, 10 cycles i7 index, 10 cycles i5 index, 90 cycles Read 2. ScRNA-
seq data was extracted from the raw sequencing data using Cell Ranger (version 7.1.0, 
10x Genomics).

For spatial transcriptomics: Tissue sections of ≤ 6.5 × 6.5 mm from the upper and 
lower lobe of lung parenchyma were used for spatial analysis. After collection, sam-
ples were fixed for 24 h in 10% neutral buffered formalin and embedded in paraffin 
(wax) to create a formalin-fixed paraffin-embedded (FFPE) block. Sections of 5 µm 
were then cut from the FFPE blocks onto Visium slides (10x Genomics) and processed 
according to the manufacturer’s protocol. Scan of H&E staining was performed with 
EVOSTM M7000 microscope (Invitrogen) using a 10x objective. FFPE libraries were 
prepared according to 10x Genomics protocol and sequenced on Illumina sequencer 
to a read depth of at least 25k reads/spot, with read lengths of 28 cycles Read 1, 10 
cycles i7 index, 10 cycles i5 index, 50 cycles Read 2. Spatial transcriptomics data 
was extracted from the raw sequencing data using Space Ranger (version 2.0.0, 10x 
Genomics).

Paired familial IPF lung dataset We obtained two paired datasets of single-cell and 
spatial transcriptomics from a patient with familial IPF lung, one of which is from the 
upper lobe slice and the other from the lower lobe slice. The upper lobe pair contains 
6762 cells and 3336 spots while the lower lobe pair contains 6173 cells and 2246 spots. 
For each of these two paired datasets, we preprocessed the data by (1) removing lowly 
expressed genes of both two data modalities, keeping genes that have at least 10 counts, 
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and (2) removing cells with low counts, keeping cells that have at least 500 counts and 
500 genes expressed, then (3) obtaining the common gene sets for both modalities by 
taking the intersection of the two gene sets.

The cell type annotations were transferred from the Lung Cell Atlas (HLCA) using 
scArches and FastGenomics platform.

To re-annotate cells that reflect senescent states, we utilized a list of 68 senescent 
markers (Additional file 2) and then calculated the average expression of the marker 
genes across all cells. Next, senescent cells were identified as having a higher than 95 
percentile of average expression of the marker genes.

Unpaired IPF lung dataset To demonstrate the general utility of the method even for 
non-paired data, we obtained an unpaired scRNA-seq and spatial transcriptomics data-
set from two different IPF patients. While the preparation for spatial transcriptomics 
is the same as for the paired data, the preparation for single-cell RNA sequencing is 
described as follows. Single-cell sequencing of human lung tissue was performed as pre-
viously described [48, 49]. In short, human lung tissue (IPF) was homogenized, and 4 g 
of tissue were digested by dispase/collagenase (collagenase: 0.1U/mL, dispase: 0.8 U/mL, 
Roche) for 1 h at 37 ◦ C. Samples were successively filtered through nylon filters (100 µm 
and 20 µm) followed by a Percoll gradient. Single epithelial cell suspensions were loaded 
onto a Chromium Single-Cell Chip (Chromium™ Single Cell 3′ Reagent Kit, v2 Chemis-
try) to obtain single-cell 3′ libraries for sequencing. cDNA obtained after droplet reverse 
transcription was amplified for 14 cycles and analyzed using Agilent Bioanalyzer. The 
barcoded libraries were sequenced using Illumina NextSeq-500 through the University 
of Pittsburgh Genomics Core Sequencing Facility, aiming for 100,000 reads per cell and 
capturing 10,000 per library.

The single-cell data contains 25,260 cells, and the spatial data, which consists of an 
upper lobe lung slide, contains 3412 spots. The preprocessing, cell type annotation, 
and senescence re-annotation were carried out following the same procedures as for 
the paired familial IPF lung dataset.

It is important to note that, since the familial IPF lung datasets are paired, the coor-
dinates of cells after spatial reconstruction represent the actual tissue coordinates. 
However, for the unpaired IPF lung dataset, the inferred cell coordinates do not 
directly reflect the actual tissue coordinates. Instead, they serve as an intermediate 
step to infer the relative spatial relationships among cells.

Cell type deconvolution

For gene expression, cell type deconvolution can be formulated as a nonnegative least 
squares (NNLS) problem, where the goal is to estimate the relative abundances of dif-
ferent cell types by solving for the nonnegative coefficients of a linear combination of 
their respective gene expression profiles. Specifically, a multicellular resolution spatial 
transcriptomics profile Y ∈ R

m×p of p genes across m spots each of which contains 
transcripts from multiple cells can be represented as Y = PS in which P ∈ R

m×c is the 
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cell type proportions to be estimated and S ∈ R
c×p is the signature matrix consisting 

of known gene expression profiles for each cell type of the total c cell types. We solved 
for P the following nonnegative least squares problem:

There are several solvers available for solving a NNLS problem, including Lawson-
Hanson’s active set method [50]. Here, we used projected gradient descent [51].

Mapping single cell to spatial images

The spatial reconstruction task involves assigning cells from scRNA-seq data to a pre-
dicted corresponding location in a tissue sample. Note that such assignment, implicitly, 
also provides deconvolution of the spot data assuming that the cell types for cells in the 
scRNA-Seq data are known. Here, we formulate this as an optimal transport (OT) prob-
lem from scRNA-seq dataset X ∈ R

n×p of p genes across n cells to spatial transcriptom-
ics dataset Y ∈ R

m×p of p genes across m. OT is commonly used to model the coupling 
between two probability distribution. In our case, we use it to model the transport of 
gene expression from one dataset to another in an optimal way. By solving the optimal 
transport problem, it is possible to estimate the optimal coupling and quantify the 
degree of similarity between the datasets. Formulating the spatial reconstruction task as 
an optimal transport problem involves constructing a cost matrix M ∈ R

m×n
+  represent-

ing distances between cells of X and spots of Y. Here, we used cosine distance 
dcos(Xi,:,Yj,:) = 1−

�Xi,:,Yj,:�

�Xi,:�·�Yj,:�
 , which is scale-invariant and can account for differences in 

measurement sensitivity between the two technologies. Furthermore, scale-invariant 
cosine dissimilarity is well-suited for handling the fact that expression of a spot in the 
spatial transcriptomics dataset is the mixture or sum of multiple cells in the scRNA-seq 
dataset. Specifically, the coupling matrix γ ∈ R

m×n
+  is solved for obtaining the optimal 

transport as follows:

where M ∈ R
m×n
+  is the cost matrix defining the cost of moving gene expression from 

cell ai to spot bj and �(γ ) = i,j γi,j log γi,j  is an entropic regularization term [52]. The 
entropic regularization version of optimal transport can be solved by Sinkhorn-Knopp’s 
alternative projection algorithm [52]. In other words, this minimization process aims to 
match cells with similar expression profiles to spots with similar transcriptomic charac-
teristics, measured by cosine similarity, thereby capturing the underlying biological rela-
tionships between the two datasets.

It is important to note that we utilized the entropy regularization version of optimal 
transport, resulting in a probabilistic mapping between cells and spots. This probabilistic 
coupling, represented by the left-stochastic matrix γ , indicates the likelihood of a spe-
cific cell being associated with a particular spot. This probabilistic coupling offers com-
putational efficiency and eliminates assumptions about the number of cells in a spot, 
including cases where a cell may reside on the boundary of two spots.

(1)P∗ ∈ arg min
P≥0

�Y − PS�F

(2)
γ ∗ ∈ arg minγ∈Rm×n

+

∑

i,j γi,jMi,j + ��(γ )

s.t. γ 1 = m; γ T1 = n; γ ≥ 0
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Combination of deconvolution and mapping

OT for spatial and scRNA-Seq data is challenging since spatial data is often sparse 
leading to less dependable inferred individual cell-spot pairs. We thus further extend 
OT by incorporating the deconvolution result, which, as mentioned above, maps a 
group of cells to a group of spots. As a result, scDOT integrates the two mentioned 
data modalities, single-cell and spatial transcriptomics, by simultaneously solving the 
deconvolution and OT problems. Specifically, given paired data modalities X and Y, 
representing gene expression profiles of a scRNA-seq and a spatial transcriptomics 
data respectively, scDOT simultaneously solves the deconvolution problem of esti-
mating cell type fractions, P, of c cell types across m spots, and the spatial recon-
struction problem of mapping n cells to their m spatial origins, resulting in a coupling 
matrix γ . These two solutions are constrained by the relation γ × C = P , where C is 
a binary matrix representing the cell type of each cell, encoded as a one-hot vector of 
size 1× c across the total n cells. The two results, P and γ , are computed simultane-
ously in an iterative manner in order to improve each other’s accuracy. The problem is 
then formed as a bi-level optimization where the deconvolution and the spatial recon-
struction are two inner optimization problems nested inside the outer optimization 
that reflects the relation γ × C = P . See supporting methods for more details.

The integration of cell type deconvolution and spatial mapping can be formulated 
as a bi-level optimization problem. This problem consists of two inner optimization 
problems: the deconvolution and the spatial reconstruction, which are nested inside 
the outer optimization problem representing the relationship between γ × C and P. 
The deconvolution problem is formulated as a NNLS optimization, while the spatial 
reconstruction problem is formulated as an OT problem:

This bilevel optimization can be rendered differentiable, enabling efficient com-
putation of backpropagation using the implicit differentiation theorem. It can be 
implemented by training a declarative neural network [24] in an end-to-end manner, 
allowing for iterative learning of the deconvolution and spatial reconstruction results 
until convergence is reached.

The optimization procedure relies on gradient descent facilitated by backpropa-
gation. Each iteration involves updates calculated using the implicit differentiation 
theorem. Specifically, during the forward pass of the optimal transport layer, the Sink-
horn-Knopp solver [52] is employed, while the backward pass entails dealing with the 
gradient of the argmin operator, particularly focusing on computing the Jacobian-vec-
tor product of the adjoint variable, which presents a significant challenge. As a result, 
the time complexity of scDOT is contingent upon the number of iterations, typically 
O(Tn), with a convergence rate of O(1/T), where T represents the iterations and n 

(3)

min
γ ∗,P∗

�γ ∗C − P∗�F

s.t. P∗ ∈ arg min
P∈Rm×c

+

�Y − PS�F

γ
∗ ∈ arg min

γ∈Rm×n
+

∑

i,j

γi,jMi,j + ��(γ )

s.t. γ 1 = m; γ T1 = n; γ ≥ 0
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denotes the number of samples, akin to a conventional gradient descent algorithm. 
The hyperparameter tuning process is outlined in detail in Additional file 1 (A.1).

Inference of cell‑cell spatial neighborhood graph

Utilizing the coupling matrix learned from optimal transport, we employed manifold 
alignment [43, 53] to project the single-cell data X and spatial coordinates Z ∈ R

m×2 
of spatial transcriptomics data onto a common nonlinear subspace. This subspace pre-
serves the correspondence between cells and spots as well as the intrinsic similarity 
within each dataset. Consequently, in the common subspace, cells are represented in 
terms of both gene expression and spatial coordinates. Subsequently, we constructed a 
k-nearest neighbor graph (k-NNG) based on this new representation, which consists of 
the new coordinates in the common subspace for each cell. This allowed us to obtain 
the cell-cell spatial neighborhood graph (in our experiments, we set k = 10 ). The pro-
jections f and g resulting from manifold alignment serve as minimizers of the following 
optimization problem, which can be formulated as a generalized eigenvalue problem:

where WX and WZ are adjacent matrices of kNN graphs of X and Z, respectively.
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