Gene regulation is a dynamic process that underlies all aspects of human development, disease response, and other key biological processes. The reconstruction of temporal gene regulatory networks has conventionally relied on regression analysis, graphical models, or other types of relevance networks. With the large increase in time series single-cell data, new approaches are needed to address the unique scale and nature of this data for reconstructing such networks. Here, we develop a deep neural network, Marlene, to infer dynamic graphs from time series single-cell gene expression data. Marlene constructs directed gene networks using a self-attention mechanism where the weights evolve over time using recurrent units. By employing meta learning, the model is able to recover accurate temporal networks even for rare cell types. In addition, Marlene can identify gene interactions relevant to specific biological responses, including COVID-19 immune response, fibrosis, and aging.
ISMB 2024
Integrating patients in time series clinical transcriptomics data
Analysis of time series transcriptomics data from clinical trials is challenging. Such studies usually profile very few time points from several individuals with varying response patterns and dynamics. Current methods for these datasets are mainly based on linear, global orderings using visit times which do not account for the varying response rates and subgroups within a patient cohort. We developed a new method that utilizes multi-commodity flow algorithms for trajectory inference in large scale clinical studies. Recovered trajectories satisfy individual-based timing restrictions while integrating data from multiple patients. Testing the method on multiple drug datasets demonstrated an improved performance compared to prior approaches suggested for this task, while identifying novel disease subtypes that correspond to heterogeneous patient response patterns.
Genome Biol.
scDOT: optimal transport for mapping senescent cells in spatial transcriptomics
Nam D Nguyen, Lorena Rosas, Timur Khaliullin, and 15 more authors
The low resolution of spatial transcriptomics data necessitates additional information for optimal use. We developed scDOT, which combines spatial transcriptomics and single cell RNA sequencing to improve the ability to reconstruct single cell resolved spatial maps and identify senescent cells. scDOT integrates optimal transport and expression deconvolution to learn non-linear couplings between cells and spots and to infer cell placements. Application of scDOT to lung spatial transcriptomics data improves on prior methods and allows the identification of the spatial organization of senescent cells, their neighboring cells and novel genes involved in cell-cell interactions that may be driving senescence.
2023
PMLR
AutoML Decathlon: Diverse Tasks, Modern Methods, and Efficiency at Scale
Nicholas Roberts, Samuel Guo, Cong Xu, and 24 more authors
Cells respond to many stressors by senescing, acquiring stable growth arrest, morphologic and metabolic changes, and a proinflammatory senescence-associated secretory phenotype. The heterogeneity of senescent cells (SnCs) and senescence-associated secretory phenotype are vast, yet ill characterized. SnCs have diverse roles in health and disease and are therapeutically targetable, making characterization of SnCs and their detection a priority. The Cellular Senescence Network (SenNet), a National Institutes of Health Common Fund initiative, was established to address this need. The goal of SenNet is to map SnCs across the human lifespan to advance diagnostic and therapeutic approaches to improve human health. State-of-the-art methods will be applied to identify, define and map SnCs in 18 human tissues. A common coordinate framework will integrate data to create four-dimensional SnC atlases. Other key SenNet deliverables include innovative tools and technologies to detect SnCs, new SnC biomarkers and extensive public multi-omics datasets. This Perspective lays out the impetus, goals, approaches and products of SenNet.
Cell R. M.
Multiset multicover methods for discriminative marker selection
Euxhen Hasanaj, Amir Alavi, Anupam Gupta, and 2 more authors
Markers are increasingly being used for several high throughput data analysis and experimental design tasks. Examples include the use of markers for assigning cell types in scRNA-seq studies, for deconvolving bulk gene expression data, and for selecting marker proteins in single cell spatial proteomics studies. Most marker selection methods focus on differential expression (DE) analysis. While such methods work well for data with a few non-overlapping marker sets, they are not appro- priate for large atlas-size datasets where several cell types and tissues are considered. To address this, we define the phenotype cover (PC) problem for marker selection and present algorithms that can improve the discriminative power of marker sets. Analysis of these sets on several marker se- lection tasks suggests that these methods can lead to solutions that accurately distinguish different phenotypes in the data.
NatureComm
Interactive single-cell data analysis using Cellar
Euxhen Hasanaj, Jingtao Wang, Arjun Sarathi, and 2 more authors
Cell type assignment is a major challenge for all types of high throughput single cell data. In many cases such assignment requires the repeated manual use of external and complementary data sources. To improve the ability to uniformly assign cell types across large consortia, platforms and modalities we developed Cellar, a software tool that provides interactive support to all the different steps involved in the assignment and dataset comparison process. We discuss the different methods implemented by Cellar, how these can be used with different data types, how to combine complementary data types and how to analyze and visualize spatial data. We demonstrate the advantages of Cellar by using it to annotate several HuBMAP datasets from multi-omics single-cell sequencing and spatial proteomics studies. Cellar is open-source and includes several annotated HuBMAP datasets. Availability https://cellar.cmu.hubmapconsortium.org/app/cellar